Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Redox Biol ; 75: 103259, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955112

RESUMEN

Ferroptosis is a form of iron-related oxidative cell death governed by an integrated redox system, encompassing pro-oxidative proteins and antioxidative proteins. These proteins undergo precise control through diverse post-translational modifications, including ubiquitination, phosphorylation, acetylation, O-GlcNAcylation, SUMOylation, methylation, N-myristoylation, palmitoylation, and oxidative modification. These modifications play pivotal roles in regulating protein stability, activity, localization, and interactions, ultimately influencing both the buildup of iron and lipid peroxidation. In mammalian cells, regulators of ferroptosis typically undergo degradation via two principal pathways: the ubiquitin-proteasome system, which handles the majority of protein degradation, and autophagy, primarily targeting long-lived or aggregated proteins. This comprehensive review aims to summarize recent advances in the post-translational modification and degradation of proteins linked to ferroptosis. It also discusses strategies for modulating ferroptosis through protein modification and degradation systems, providing new insights into potential therapeutic applications for both cancer and non-neoplastic diseases.

2.
Heliyon ; 10(11): e32571, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961954

RESUMEN

Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.

3.
Cell Death Discov ; 10(1): 329, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030174

RESUMEN

Hyperbilirubinaemia is a prevalent condition during the neonatal period, and if not promptly and effectively managed, it can lead to severe bilirubin-induced neurotoxicity. Sunflower seeds are a nutrient-rich food source, particularly abundant in linoleic acid. Here, we provide compelling evidence that lactating maternal mice fed a sunflower seed diet experience enhanced neurological outcomes and increased survival rates in hyperbilirubinemic offspring. We assessed histomorphological indices, including cerebellar Nissl staining, and Calbindin staining, and hippocampal hematoxylin and eosin staining. Furthermore, we observed the transmission of linoleic acid, enriched in sunflower seeds, to offspring through lactation. The oral administration of linoleic acid-rich sunflower seed oil by lactating mothers significantly prolonged the survival time of hyperbilirubinemic offspring mice. Mechanistically, linoleic acid counteracts the bilirubin-induced accumulation of ubiquitinated proteins and neuronal cell death by activating autophagy. Collectively, these findings elucidate the novel role of a maternal linoleic acid-supplemented diet in promoting child health.

4.
Carcinogenesis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008332

RESUMEN

Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g., using EIPA or EHoP-016) or genetic interventions (e.g., RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.

5.
J Hematol Oncol ; 17(1): 41, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844964

RESUMEN

Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.


Asunto(s)
Ferroptosis , Humanos , Animales , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Peroxidación de Lípido
6.
Trends Pharmacol Sci ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866667

RESUMEN

Selenoprotein glutathione peroxidase 4 (GPX4) serves as a crucial suppressor of oxidative stress-induced ferroptosis, making it an attractive target for disease therapy. Here, we discuss recent strategies and challenges associated with targeting GPX4 through covalent inhibitors, proteolysis targeting chimera (PROTAC) degraders, and cell-type-specific degraders in the context of cancer.

7.
Chin Med J (Engl) ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945689

RESUMEN

BACKGROUND: Hepatic inflammatory cell accumulation and the subsequent systematic inflammation drive acute-on-chronic liver failure (ACLF) development. Previous studies showed that the vagus nerve exerts anti-inflammatory activity in many inflammatory diseases. Here, we aimed to identify the key molecule mediating the inflammatory process in ACLF and reveal the neuroimmune communication arising from the vagus nerve and immunological disorders of ACLF. METHODS: Proteomic analysis was performed and validated in ACLF model mice or patients, and intervention animal experiments were conducted using neutralizing antibodies. PNU-282987 (acetylcholine receptor agonist) and vagotomy were applied for perturbing vagus nerve activity. Single-cell RNA sequencing (scRNA-seq), flow cytometry, immunohistochemical and immunofluorescence staining, and CRISPR/Cas9 technology were used for in vivo or in vitro mechanistic studies. RESULTS: The unbiased proteomics identified C-X-C motif chemokine ligand 9 (CXCL9) as the greatest differential protein in the livers of mice with ACLF and its relation to the systematic inflammation and mortality were confirmed in patients with ACLF. Interventions on CXCL9 and its receptor C-X-C chemokine receptor 3 (CXCR3) improved liver injury and decreased mortality of ACLF mice, which were related to the suppressing of hepatic immune cells' accumulation and activation. Vagus nerve stimulation attenuated while vagotomy aggravated the expression of CXCL9 and the severity of ACLF. Blocking CXCL9 and CXCR3 ameliorated liver inflammation and increased ACLF-associated mortality in ACLF mice with vagotomy. scRNA-seq revealed that hepatic macrophages served as the major source of CXCL9 in ACLF and were validated by immunofluorescence staining and flow cytometry analysis. Notably, the expression of CXCL9 in macrophages was modulated by vagus nerve-mediated cholinergic signaling. CONCLUSIONS: Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.

8.
Autophagy ; : 1-16, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38916095

RESUMEN

Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.

9.
Cancer Lett ; 593: 216970, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763475

RESUMEN

Venetoclax is a BCL2-targeted drug employed in treating various cancers, particularly hematologic malignancies. Venetoclax combination therapies are increasingly recognized as promising treatment strategies for acute myeloid leukemia (AML). In this study, we conducted an unbiased drug screen and identified anlotinib, a promising multi-targeted receptor tyrosine kinase inhibitor with oral activity currently utilized in the treatment of solid tumor, as a potent enhancer of venetoclax's anticancer activity in AML. Our investigation encompassed AML cell lines, primary cells, and mouse models, demonstrating effective low-dose combination therapy of anlotinib and venetoclax with minimal cytopenia or organ damage. Proteomic analysis revealed abnormal mitotic signals induced by this combination in AML cells. Mechanistically, anlotinib synergized with venetoclax by suppressing ARPP19 protein, leading to sustained activation of PP2A-B55δ. This inhibited AML cells from entering the mitotic phase, culminating in mitotic catastrophe and apoptosis. Additionally, we identified a specific synthetic lethal vulnerability in AML involving an ARPP19 mutation at S62 phosphorylation. These findings underscore the therapeutic potential of anlotinib and venetoclax combination therapy in AML, warranting further clinical investigation.


Asunto(s)
Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Sinergismo Farmacológico , Indoles , Leucemia Mieloide Aguda , Mitosis , Quinolinas , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Humanos , Sulfonamidas/farmacología , Sulfonamidas/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Animales , Quinolinas/farmacología , Quinolinas/administración & dosificación , Mitosis/efectos de los fármacos , Ratones , Indoles/farmacología , Indoles/administración & dosificación , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
10.
Mol Carcinog ; 63(8): 1515-1527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38751020

RESUMEN

Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Neoplasias Ováricas , Paclitaxel , ATPasas de Translocación de Protón Vacuolares , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos
11.
Mol Cancer ; 23(1): 89, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702722

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
12.
Nat Cell Biol ; 26(5): 811-824, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38671262

RESUMEN

The mechanisms underlying the dynamic remodelling of cellular membrane phospholipids to prevent phospholipid peroxidation-induced membrane damage and evade ferroptosis, a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation, remain poorly understood. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a critical role in ferroptosis resistance by increasing membrane phospholipid saturation via the Lands cycle, thereby reducing membrane levels of polyunsaturated fatty acids, protecting cells from phospholipid peroxidation-induced membrane damage and inhibiting ferroptosis. Furthermore, the enhanced in vivo tumour-forming capability of tumour cells is closely associated with the upregulation of LPCAT1 and emergence of a ferroptosis-resistant state. Combining LPCAT1 inhibition with a ferroptosis inducer synergistically triggers ferroptosis and suppresses tumour growth. Therefore, our results unveil a plausible role for LPCAT1 in evading ferroptosis and suggest it as a promising target for clinical intervention in human cancer.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Ferroptosis , Fosfolípidos , Humanos , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Animales , Fosfolípidos/metabolismo , Línea Celular Tumoral , Peroxidación de Lípido , Ratones Desnudos , Membrana Celular/metabolismo , Ratones , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Proliferación Celular
13.
Life Metab ; 3(2): loae008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523816
14.
Nat Rev Clin Oncol ; 21(5): 370-388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38486054

RESUMEN

Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Cobre/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
15.
Cell Death Differ ; 31(4): 387-404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521844

RESUMEN

The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.


Asunto(s)
Citocromos c , Humanos , Citocromos c/metabolismo , Animales , Muerte Celular , Apoptosis , Nucleofosmina , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Neoplasias/metabolismo , Neoplasias/patología
16.
Trends Immunol ; 45(4): 274-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494365

RESUMEN

Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.


Asunto(s)
Inmunidad Innata , Lipopolisacáridos , Animales , Humanos , Inflamasomas/metabolismo , Caspasas/metabolismo , Mamíferos
17.
Nat Cell Biol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424270

RESUMEN

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

18.
Arch Toxicol ; 98(4): 1025-1041, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383612

RESUMEN

Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Regulación de la Expresión Génica , Apoptosis , Estrés del Retículo Endoplásmico , Neoplasias/tratamiento farmacológico , Neoplasias/genética
19.
Trends Cancer ; 10(5): 417-429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38246792

RESUMEN

Ferroptosis, a nonapoptotic form of cell death characterized by iron accumulation and uncontrolled lipid peroxidation, holds promise as a therapeutic approach in cancer treatment, alongside established modalities, such as chemotherapy, immunotherapy, and radiotherapy. However, recent research has raised concerns about its side effects, including damage to immune cells, hematopoietic stem cells, liver, and kidneys, the development of cachexia, and the risk of secondary tumor formation. In this review, we provide an overview of these emerging findings, with a specific emphasis on elucidating the underlying mechanisms, and underscore the critical significance of effectively managing side effects associated with targeted ferroptosis-based therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Ferroptosis/efectos de los fármacos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Animales , Hierro/metabolismo , Hierro/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Caquexia/etiología , Caquexia/terapia
20.
Cancer Res ; 84(6): 796-797, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38276975

RESUMEN

Colorectal cancer is a prevalent cancer type in the United States, affecting both genders and influenced by genetics and environmental factors. The role of the gut microbiome in colorectal cancer development and therapy response is a burgeoning field of study. A recent study uncovered that trans-3-indoleacrylic acid (IDA), a microbial metabolite from P. anaerobius, promotes colorectal cancer by inhibiting ferroptosis, a type of nonapoptotic cell death driven by unrestricted lipid peroxidation and subsequent membrane damage. IDA activates aryl hydrocarbon receptor (AHR), a nuclear transcription factor, leading to the expression of aldehyde dehydrogenase 1 family member A3 (ALDH1A3). ALDH1A3, known for aldehyde detoxification, also contributes to ferroptosis resistance by generating reduced nicotinamide adenine dinucleotide (NADH), critical for the synthesis of reduced coenzyme Q10 (COQH10), by apoptosis-inducing factor mitochondria-associated 2 (AIFM2, also known as FSP1). Knocking out AHR, AIFM2, or ALDH1A3 reverses the inhibitory effect of IDA on ferroptosis and IDA-mediated tumor growth. Significantly, P. anaerobius is enriched in patients with colorectal cancer, and supplementing IDA or P. anaerobius accelerates colorectal cancer progression in spontaneous or orthotopic mouse models. Taken together, these findings suggest that targeting P. anaerobius-mediated ferroptosis resistance emerges as a promising strategy to combat colorectal cancer development.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Microbioma Gastrointestinal , Animales , Ratones , Humanos , Masculino , Femenino , Muerte Celular , Peroxidación de Lípido , Neoplasias Colorrectales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA