Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicon ; 169: 91-102, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31445943

RESUMEN

The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).


Asunto(s)
Coagulantes/química , Venenos de Crotálidos/química , Crotalinae , Proteoma , Animales , Coagulantes/antagonistas & inhibidores , Coagulantes/inmunología , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/inmunología , Indonesia , Malasia , Tailandia , Vietnam
2.
J Proteomics ; 148: 44-56, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27418434

RESUMEN

UNLABELLED: The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom. BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.


Asunto(s)
Crotalinae , Proteoma/análisis , Venenos de Víboras/química , Animales , Hemolíticos/análisis , L-Aminoácido Oxidasa/análisis , Lectinas Tipo C/análisis , Metaloproteasas/análisis , Fosfolipasas A2/análisis , Serina Proteasas/análisis , Venenos de Víboras/enzimología
3.
J Sci Food Agric ; 95(13): 2763-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25582089

RESUMEN

BACKGROUND: Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells. RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis. CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.


Asunto(s)
Antioxidantes/farmacología , Neoplasias de la Mama , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN , Petroselinum/química , Fenoles/farmacología , Células 3T3-L1 , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Compuestos de Bifenilo/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/prevención & control , ADN/efectos de los fármacos , Femenino , Alimentos Funcionales , Humanos , Peróxido de Hidrógeno/metabolismo , Células MCF-7 , Ratones , Metástasis de la Neoplasia/prevención & control , Estrés Oxidativo/efectos de los fármacos , Fenoles/análisis , Fenoles/uso terapéutico , Fitoterapia , Picratos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA