Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Materials (Basel) ; 17(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38473602

External prestressing is widely employed in structural strengthening engineering due to its numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer (FRP) bars as external prestressing materials to strengthen one-way concrete slabs. Five one-way concrete slabs were strengthened with externally prestressed FRP bars with different prestress levels and different amounts of FRP bars, while one non-strengthened slab was used for comparison. The effects of strengthening on the flexural behavior, specifically the cracking load, ultimate load, stiffness and failure mode, were analyzed systematically. Moreover, the ductility and cost-benefit optimizing properties of the reinforcing design were discussed. The results show that external prestressed FRP bars significantly improve the cracking load, ultimate load and stiffness of one-way concrete slabs. The absence of a bond between the concrete and FRP bars overcomes the brittleness of the FRP bars, while the strengthened slabs exhibit satisfactory ductility and a higher post-yield stiffness and bearing capacity. Additionally, the cost/benefit ratio is optimized by increasing the prestress level, while a higher number of prestressed FRP bars is beneficial to ductility. Finally, a method for calculating the stress in prestressed FRP bars at ultimate loads was proposed. Irrespective of the prestressing material, this method is applicable to both strengthened beams and one-way slabs.

2.
Aging (Albany NY) ; 16(4): 3302-3331, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38334961

OBJECTIVE: The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN. METHODS: Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined. RESULTS: Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the in vitro model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction. CONCLUSIONS: ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.


Diabetes Mellitus , Diabetic Nephropathies , Exosomes , MicroRNAs , Mitochondrial Diseases , Nanostructures , Humans , Rats , Animals , Exosomes/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Methylation , Mitochondrial Diseases/metabolism , Diabetes Mellitus/metabolism
3.
Article En | MEDLINE | ID: mdl-38347789

BACKGROUND: Cinnamic acid (Cinn) is a phenolic acid of Cinnamomum cassia (L.) J. Presl. that can ameliorate diabetic nephropathy (DN). However, comprehensive therapeutic targets and underlying mechanisms for Cinn against DN are limited. OBJECTIVE: In this study, a network pharmacology approach and in vivo experiments were adopted to predict the pharmacological effects and mechanisms of Cinn in DN therapy. METHODS: The nephroprotective effect of Cinn on DN was investigated by a streptozotocininduced diabetes mellitus (DM) mouse model. The protein-protein interaction network of Cinn against DN was established by a network pharmacology approach. The core targets were then identified and subjected to molecular docking with Cinn. RESULTS: Cinn treatment effectively restored body weight, ameliorated hyperglycemia, and reduced kidney dysfunction markers in DM mice, also demonstrating a reduction in tissue injury. Network pharmacology analysis identified 298 DN-Cinn co-target genes involved in various biological processes and pathways. Seventeen core targets were identified, eight of which showed significant differential expression in the DN and healthy control groups. Molecular docking analysis revealed a strong interaction between Cinn and PTEN. Cinn treatment downregulated the PTEN protein expression in DM mice. CONCLUSION: This study revealed the multi-target and multi-pathway characteristics of Cinn against DN. Cinn improved renal pathological damage of DN, which was related to the downregulation of PTEN.

4.
Front Oncol ; 13: 1331671, 2023.
Article En | MEDLINE | ID: mdl-38148845

Over the past few decades, significant progress has been made in the development of drugs to combat cancer. It is unfortunate that these drugs can also lead to various kidney injuries and imbalances in electrolyte levels. Nephrotoxicity caused by chemotherapy drugs can impact different parts of the kidneys, including the glomeruli, renal tubules, interstitium, or renal microvessels. Despite the existing knowledge, our understanding of the mechanisms underlying the renal damage caused by antitumoral drugs remains incomplete. In this review, we aim to provide a comprehensive overview of the specific types of kidney injury and the mechanisms responsible for the drug-mediated renal damage, and briefly discuss possible prevention and treatment measures. Sensitive blood and urine biomarkers can provide clinicians with more information about kidney injury detection and reference value for subsequent treatment options. In addition, we emphasize that both oncologists and nephrologists have a responsibility to remain vigilant against the potential nephrotoxicity of the drugs. It's crucial for experts in both fields to collaborate in early detection, monitoring and prevention of kidney damage.

5.
J Colloid Interface Sci ; 651: 221-234, 2023 Dec.
Article En | MEDLINE | ID: mdl-37542897

The construction of heterojunction systems is an effective way to efficiently generate hydrogen by water photolysis. In this work, Ni-MOF (trimesic acid, (BTC)) and g-C3N4 (denoted as CN) were combined, and then Ni-MOF/CN was modified by 4-Methyl-5-vinyl thiazole (denoted as MVTh). Finally, CdS was loaded on the surface of Ni-MOF/CN/MVTh to prepare the photocatalyst Ni-MOF/g-C3N4/MVTh/CdS (denoted as Ni/CN/M/Cd) with a triangular closed-loop path heterojunction for the first time. As a photocatalyst without precious metal cocatalysts, Ni/CN/M/Cd displayed high H2 evolution (17.844 mmol·g-1·h-1) under an optimum CdS loading of 40 wt%. The H2 evolution rate was approximately 79 times that of Ni-MOF/CN and exceeded those of almost all catalysts based on MOF/CN in the literature. The triangular closed-loop heterojunction formed between Ni-MOF, g-C3N4, and CdS could realize the directional migration of photocarriers and significantly diminished the transfer resistance of carriers. The Ni2+ in Ni-MOF provided many cocatalytic sites for H2 evolution via g-C3N4 and CdS. Furthermore, charge carrier separation in Ni-MOF/CN/CdS improved after the innovative addition of MVTh. This study provides a reference for the construction of a closed-loop heterojunction system without precious metal cocatalysts.

6.
Anal Methods ; 15(32): 4021-4031, 2023 Aug 17.
Article En | MEDLINE | ID: mdl-37548508

A novel fluorescent dye molecule - triphenylamine (TPA)-benzothiazole (BZT) - based on excited state intramolecular proton transfer (ESIPT) was prepared by the Suzuki coupling reaction. The photophysical property assay indicates that BZT-TPA appeared in distinguishable colors in mixed solvents with different water contents. Moreover, BZT-TPA exhibited observable AIE behavior. On this basis, a fluorescent probe BZT-TPA-BO was synthesized for detecting H2O2. This probe molecule was found to have excellent selectivity, rapid response, and good linear relationship (R2 = 0.989) for detecting H2O2 in aqueous medium. Through DFT calculation, fluorescence spectrum, nuclear magnetic titration and HR-MS, the mechanism of recognition of H2O2 by the probe BZT-TPA-BO is proposed. In addition, the probe BZT-TPA-BO to some extent exhibited better performance for detecting exogenous H2O2 in HeLa cells.

7.
J Colloid Interface Sci ; 650(Pt A): 19-27, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37392496

Exploitation of solid-state proton-conducting materials with high anhydrous proton conductivity from subzero temperature (<273 K) to moderate temperature (>353 K) is a great challenge. Here, Brönsted acid-dopped zirconium-organic xerogels (Zr/BTC-xerogels) are prepared for anhydrous proton conduction from subzero to moderate temperature. Abundant acid sites and strong H-bonding interactions make the CF3SO3H (TMSA)-introduced xerogel gain high proton conductivity from 9.0 × 10-4 S cm-1 (253 K) to 1.40 × 10-2 S cm-1 (363 K) under anhydrous conditions, which are in the leading level. This provides a new possibility to develop wide-operating-temperature conductors.

8.
Front Oncol ; 13: 1001802, 2023.
Article En | MEDLINE | ID: mdl-36816928

A 49-year-old male who had been working in welding for more than 30 years was admitted to the hospital for a medical checkup that revealed a lung shadow without specific symptoms such as coughing and sputum. Imaging studies showed diffuse ground-glass changes in both lungs, wall cavities with wall nodules, multiple peripheral nodules, and some nodules with calcification. The patient has been engaged in welding work for more than 30 years and exposed to iron dust. Lung tissue biopsy, routine morphological and pathological fluid basis examination of alveolar lavage fluid, can be considered as pulmonary iron particles, which can be regarded as iron dust lung. Acid-fast bacilli were detected in both fibrobronchoscopic brush extract and alveolar lavage fluid acid-fast staining. As the pathological examination revealed granulomatous inflammation showed caseation necrosis, the patient was judged to have concomitant pulmonary TB. After the diagnosis was made, the patient was no longer exposed to dust and was treated with appropriate anti- tuberculosis (TB) therapy. Lung lesions caused by welding have been reported, but the simultaneous finding of siderosis with pulmonary TB is specific to the case presented here. By describing the imaging features, combining different staining methods of alveolar lavage fluid and pathological examination of lung tissue, we showed various morphological manifestations of this case, aiming at improving the morphological diagnosis level of laboratory physicians and enabling patients to be diagnosed and treated early.

9.
Front Genet ; 13: 1013637, 2022.
Article En | MEDLINE | ID: mdl-36303545

Kidney diseases have become an increasingly common public health concern worldwide. The discovery of specific biomarkers is of substantial clinical significance in kidney disease diagnosis, therapy and prognosis. The small extracellular vesicle (sEV) can be secreted by several cell types, like renal tubular epithelial cells, podocytes, collecting duct cells and leap cells, and functions as a communication medium between cells by delivering signaling molecules, including proteins, lipids and nucleic acids. There has been growing evidence that kidney diseases are associated with aberrant expression of sEV-derived non-coding RNAs (sEV-ncRNAs). As a result, sEV-ncRNAs may provide valuable information about kidney diseases. In this paper, a systematic review is presented of what has been done in recent years regarding sEV-ncRNAs in kidney disease diagnosis, treatment and prognosis.

10.
Anal Chim Acta ; 1214: 339939, 2022 Jun 29.
Article En | MEDLINE | ID: mdl-35649638

In current work, one novel benzothiazole-based fluorescent chemosensor (TZ-BO) with ESIPT luminescence mechanism was designed for the detection of hydrogen peroxide (H2O2) as typical reactive oxygen species (ROS). The boronate catenary in our designed probe molecule TZ-BO is both the blocking group of ESIPT and the reactive group of H2O2. The synthesized probe TZ-BO has the advantages of large Stokes shift, high sensitivity, good selectivity, and fast reaction speed to H2O2. The ability of the probe to detect H2O2 in aqueous media and exogenous H2O2 in cells by fluorescence signal was investigated. The experimental results manifested that probe TZ-BO is able to sensitively detect H2O2 using a fluorescence method in an excellent linear range of H2O2 concentration from 0 to 60 µM (R2 = 0.994). The detection limit was determined as 1.0 × 10-6 M. Most importantly, the probe TZ-BO with highly low cytotoxicity can effectively detect exogenous H2O2 in HeLa cells. This probe provides a promising tool for monitoring the real concentration level of H2O2 in related physiological and pathological researches.


Fluorescent Dyes , Hydrogen Peroxide , Benzothiazoles , HeLa Cells , Humans , Limit of Detection
11.
J Colloid Interface Sci ; 607(Pt 1): 181-191, 2022 Feb.
Article En | MEDLINE | ID: mdl-34500417

There exists a challenge to develop solid-state proton conductors with high conductivity not only at high working temperatures (>353 K) but at start-up temperature and even at subzero temperature (<273 K) in cold climates or high-altitude drones. Here we present a series of zirconium-organic xerogels (Zr/Fum-xerogels) with porosity and defectivity, supported by N2 sorption, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS), exhibiting a high anhydrous proton conductivity over the temperature range of 233 to 433 K. The anhydrous conductivity of Zr/Fum-xerogel-0.04 reaches 5.68 × 10-4 (233 K) and 2.5 × 10-2 S cm-1 (433 K), situating in the leading level of all anhydrous conductors reported to date. Further, the defective effects on acidities and conductive mechanisms of xerogels, especially structural changes of water clusters generated by varying temperatures are investigated by ion exchange capacity (IEC), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of NH3 (NH3-TPD) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The zirconium-organic xerogels with outstanding conducting performance is further implemented as impedance sensor towards formic acid.

12.
Materials (Basel) ; 14(12)2021 Jun 13.
Article En | MEDLINE | ID: mdl-34199323

In this study, recycled fine aggregate (RFA), also known as recycled brick micro-powder (RBM), was used to completely replace quartz sand for the preparation of green, low-cost ecological engineered cementitious composites (ECO-ECC). RFA was used to replace ultrafine silica sand in the range of 0-100%. Firstly, the optimal replacement rate of RFA was determined, and the test results showed that the ECO-ECC prepared by fully replacing quartz sand with RFA as fine aggregate had strain hardening and multiple cracks, and the tensile strain of the specimens could reach 3%. Then the effects of fiber volume fraction and size effect on the mechanical properties of ECO-ECC were systematically investigated. The results showed that the fiber volume fraction has some influence on the mechanical properties of ECO-ECC. With the increase of fiber volume fraction, the ultimate deflection of the material keeps increasing up to 44.87 mm and the ultimate strain up to 3.46%, with good ductility and toughness. In addition, the compressive strength of the material has a good size effect, and there is a good linear relationship between different specimen sizes and standard sizes. It provides a good basis for engineering applications. Microscopic experimental results also showed that fibers play an important bridging role in the material, and the fiber pull-out and pull-break damage effects are significant.

13.
Int J Cancer ; 149(10): 1801-1808, 2021 11 15.
Article En | MEDLINE | ID: mdl-34224580

The benefit of postmastectomy radiotherapy (PMRT) for pT1-2N1M0 breast cancer patients currently remains controversial. This study was conducted to investigate whether pT1-2N1M0 breast cancer patients could benefit from PMRT based on RecurIndex assay. The clinical data of 213 pT1-2N1M0 breast cancer patients were retrospectively analyzed. Through RecurIndex assay, 81 cases were assessed as the low risk, and 132 as the high risk. Compared to low-risk patients, high-risk patients especially those not receiving PMRT had a significantly increased risk of recurrence and metastasis, and worse 7-year local-regional recurrence-free interval (LRFI), distance recurrence-free interval (DRFI) and recurrence-free survival (RFS) rates. PMRT-based subgroup analysis indicated no significant differences between the low-risk patients with and without PMRT in 7-year LRFI, DRFI, RFS and overall survival (OS) rates, but apparent differences were all shown between the high-risk patients with and without PMRT in 7-year LRFI, DRFI, RFS and OS rates. Overall, for pT1-2N1M0 breast cancer patients at low risk of recurrence and metastasis stratified by RecurIndex assay, there may be a phenomenon of no PMRT benefits, while for those at high risk, use of PMRT may produce survival benefits.


Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Mastectomy/methods , Radiotherapy, Adjuvant/methods , Adult , Aged , Breast Neoplasms/pathology , Combined Modality Therapy , Female , Humans , Lymphatic Metastasis , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Postoperative Period , Retrospective Studies , Risk Factors , Survival Analysis
14.
Sci Rep ; 11(1): 7657, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828195

RecurIndex, a multigene profiling assay, can predict the risk of local recurrence and distant metastasis in female breast cancer (FBC), but its role in male breast cancer (MBC) remains unclear. In this study, the clinicopathological data of 43 consecutive MBC patients undergoing surgeries between 2009 and 2018 were retrospectively analysed. Their paraffin-embedded tissue sections were examined by RecurIndex test which comprised 2 models: recurrence index for local recurrence (RI-LR) and recurrence index for distant recurrence (RI-DR). Of 43 patients, there were 26 low-risk and 17 high-risk patients assessed by RI-LR, while 17 low-risk and 26 high-risk patients by RI-DR. For RI-LR, tumor N stage showed statistically significant (P < 0.001) between low- and high-risk patients; for RI-DR, differences were pronounced in tumor grade (P = 0.033), T stage (P = 0.043) and N stage (P = 0.003). In terms of clinical outcomes, the overall survival (OS) of low- and high-risk patients stratified by RI-LR showed no statistically significant differences (P = 0.460), while high-risk patients identified by RI-DR had a significantly worse distant recurrence-free survival (DRFS) (P = 0.035), progression-free survival (PFS) (P = 0.019) and OS (P = 0.044) than low-risk patients. Overall, RI-DR can effectively predict the DRFS, PFS and OS of MBC patients and identify those at low risk of recurrence, which may serve as a potential prognostic tool for MBC.


Breast Neoplasms, Male/genetics , Neoplasm Recurrence, Local/genetics , Aged , Breast/pathology , Breast Neoplasms, Male/pathology , Genetic Testing , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Assessment
15.
Materials (Basel) ; 14(2)2021 Jan 14.
Article En | MEDLINE | ID: mdl-33466761

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.

16.
Materials (Basel) ; 13(20)2020 Oct 13.
Article En | MEDLINE | ID: mdl-33066117

In this paper, a series of shear specimens with or without groove were manufactured to mainly analyze the effects of grooves (or shear section height) and steel fibers on the shear properties of concrete with recycled coarse aggregate through double-side direct shear test. In addition, the relationship between the shear strength and the compressive strength and splitting tensile strength of steel fiber reinforced concrete with recycled coarse aggregate (SFRCAC) was also discussed. The experimental results showed that the peak load, deformation corresponding to the peak load and calculated shear strength of the specimens with grooves were lower than those of the specimens without grooves. The steel fiber and recycled coarse aggregate (RCA) had a significant effect on the shear properties of SFRCAC. As the volume content of steel fibers increased, the shear strength of SFRCAC and the corresponding deformation increased gradually. With the replacement ratio of RCA increasing, the shear strength of SFRCAC decreased but the corresponding deformation increased gradually. Finally, the formula for calculating the shear strength of SFRCAC was proposed by analyzing and fitting the test results and the data of related literature.

17.
Materials (Basel) ; 13(3)2020 Feb 03.
Article En | MEDLINE | ID: mdl-32028686

Waste concrete was recycled and crushed into fine aggregate to prepare a high ductility cementitious composite (HDCC) in this study, for helping dispose the massive amount of construction waste and for reserving natural resources. Firstly, the features of recycled fine aggregate (RFA) were analyzed in detail and compared with natural fine aggregate (NFA). After that, the mechanical properties, including compression, flexure, bending and tension, and the microstructure of high ductility cementitious composite (HDCC) prepared with RFA were systematically investigated and compared with that of HDCC prepared with NFA. The results show that, since RFA has a higher water absorption rate and contains 4.86 times as much crush dust as NFA, HDCC with RFA forms a denser matrix and a higher bond between fiber and matrix than HDCC with NFA. Thus, HDCC with RFA has higher compressive, flexural, bending and tensile strength. Meanwhile, the higher bond between the fiber and matrix of HDCC with RFA and the finer particle sizes of RFA can greatly promote the development of multiple cracking. As a result, HDCC with RFA exhibits more remarkable stain hardening, and presents 182.73% higher peak deflection in bending and 183.33% higher peak strain in tension than HDCC with NFA. Finally, with the consideration of fiber volume fraction, the prediction models for the peak strengths of HDCC with RFA were proposed. The prediction results show a good agreement with the test results.

18.
R Soc Open Sci ; 6(6): 190112, 2019 Jun.
Article En | MEDLINE | ID: mdl-31312483

The durability of cement-based materials depends on the property of water absorption. In this work, a technique of X-ray CT combined with CsCl enhancing was used to continuously monitor the dynamic process of water uptake in cement-based materials and the gravimetric method was used to measure the amount of water absorption. The relationship between the capillary coefficient (k) and sorptivity (S) was firstly established based on theory analysis and well verified by the experiment results. In accordance with theory analysis and experiment results, it is found that the ratio of sorptivity to capillary coefficient equals the porosity (φ) of materials, i.e. S/k = φ. This model provides a simple method for obtaining the capillary coefficient of porous materials from the measurement of sorptivity and porosity.

19.
Materials (Basel) ; 13(1)2019 Dec 31.
Article En | MEDLINE | ID: mdl-31906088

For the engineering structure in case of fire, a fire hydrant is generally used for extinguishing the fire. This paper presents an experimental investigation on interfacial bond behavior of high-strength concrete-filled steel tube (HSCFST) after exposure to elevated temperatures and cooled by fire hydrant using the pull-out test of 22 specimens. According to the experimental study, the failure mechanism of HSCFST exposed to elevated temperatures and water-cooling (ETWC) was revealed, the influence of various parameters on the bond behavior was analyzed, and the calculation formula of the bond strength of HSCFST subjected to ETWC was put forward. The results show that the load-slip curves of the loading end and the free end of the specimen are basically similar, and can be divided into three types of typical curves. In the push out test, the strain on the outer surface of the steel tube is exponentially distributed with its distance from the loading end. After ETWC exposure, the bond strength of the specimen is less affected by the concrete strength, which is inversely proportional to the anchorage length, and it is basically stable after the constant temperature duration is longer than 60 min. With the increase of the maximum temperature, the ultimate bond strength increases first, then decreases and then increases, and the residual bond strength increases first and then decreases. Besides, the study indicate that cooling method has significant influence on the bond behavior, compared with natural cooling specimens, the ultimate bond strength, residual bond strength, and shear bond stiffness of water-cooling specimens are smaller, and the interfacial energy dissipation capacity is larger.

...