Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 5(1): 17, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36697747

RESUMEN

This past decade has seen extensive research in lithium-sulfur batteries with exemplary works mitigating the notorious polysulfide shuttling. However, these works utilize ether electrolytes that are highly volatile severely hindering their practicality. Here, we stabilize a rare monoclinic γ-sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. Carbonates are known to adversely react with the intermediate polysulfides and shut down Li-S batteries in first discharge. Through electrochemical characterization and post-mortem spectroscopy/ microscopy studies on cycled cells, we demonstrate an altered redox mechanism in our cells that reversibly converts monoclinic sulfur to Li2S without the formation of intermediate polysulfides for the entire range of 4000 cycles. To the best of our knowledge, this is the first study to report the synthesis of stable γ-sulfur and its application in Li-S batteries. We hope that this striking discovery of solid-to-solid reaction will trigger new fundamental and applied research in carbonate electrolyte Li-S batteries.

2.
J Phys Chem Lett ; 11(6): 2308-2313, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32125855

RESUMEN

The pH-dependent kinetics of the hydrogen oxidation and evolution reactions (HERs and HORs) remain a fundamental conundrum in modern electrochemistry. Recent efforts have focused on the impact of the interfacial water network on the reaction kinetics. In this work, we quantify the importance of interfacial water dynamics on the overall hydrogen reaction kinetics with kinetic isotope effect (KIE) voltammetry experiments on single-crystal Pt(111) and Pt(110). Our results find a surface-sensitive KIE for both the HER and the HOR that is measurable in base but not in acid. Remarkably, the HOR in KOD on Pt(111) yields a KIE of up to 3.4 at moderate overpotentials, greater than any expected secondary KIE values, yet the HOR in DClO4 yields no measurable KIE. These results provide direct evidence that solvent dynamics play a crucial role in the alkaline but not in the acidic hydrogen reactions, thus reinforcing the importance of "beyond adsorption" phenomena in modern electrocatalysis.

3.
Faraday Discuss ; 199: 511-524, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28474019

RESUMEN

Understanding electrical percolation and charging mechanisms in electrochemically active biphasic flowable electrodes is critical for enabling scalable deionization (desalination) and energy storage. Flowable electrodes are dynamic material systems which store charge (remove ions) and have the ability to flow. This flow process can induce structural changes in the underlying material arrangement and result in transient and non-uniform material properties. Carbon-based suspensions are opaque, multi-phase, and three dimensional, and thus prior characterization of the structural properties has been limited to indirect methods (electrochemical and rheology). Herein, a range of mixed electronic and ionically conducting suspensions are evaluated to determine their static structure, function, and properties, utilizing synchrotron radiation X-ray tomographic microscopy (SRXTM). The high brilliance of the synchrotron light enables deconvolution of the liquid and solid phases. Reconstruction of the solid phase reveals agglomeration cluster volumes between 10 µm3 and 103µm3 (1 pL) for low loaded samples (5 wt% carbon). The largest agglomeration cluster in the low loaded sample (5 wt%) occupied only 3% of the reconstructed volume whereas samples loaded with 10 wt% activated carbon demonstrated electrically connected clusters that occupied 22% of the imaged region. The highly loaded samples (20 wt%) demonstrated clusters of the order of a microliter, which accounted for 63-85% of the imaged region. These results demonstrate a capability for discerning the structural properties of biphasic systems utilizing SRXTM techniques, and show that discontinuity in the carbon particle networks induces decreased material utilization in low-loaded flowable electrodes.

4.
Polymers (Basel) ; 9(9)2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30965763

RESUMEN

The ability to predict transitions in the microstructure of mixed colloidal suspensions is of extreme interest and importance. The data presented here is specific to the case of battery electrode slurries whereby the carbon additive is reported to form strong colloidal gels. Using rheology, we have determined the effect of mixed particle systems on the critical gel transition ϕ gel . More specifically, we show that the introduction of a high volume fraction of large non-Brownian particles has little to no effect on ϕ gel . Although ϕ gel is unchanged, the larger particles do change the shape of the linear viscoelasticity and the nonlinear yielding behavior. There are interesting similarities to the nonlinear behavior of the colloidal gels with trends observed for colloidal glasses. A comparison of experimental data and the prediction from theory shows that the equation presented by Poon et al. is able to quantitatively predict the transition from a fluid state to a gel state.

5.
Phys Chem Chem Phys ; 16(36): 19250-7, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25098811

RESUMEN

The development of improved catalysts for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) in basic electrolytes remains a major technical obstacle to improved fuel cells, water electrolyzers, and other devices for electrochemical energy storage and conversion. Based on the free energy of adsorbed hydrogen intermediates, theory predicts that alloys of nickel and silver are active for these reactions. In this work, we synthesize binary nickel-silver bulk alloys across a range of compositions and show that nickel-silver alloys are indeed more active than pure nickel for hydrogen evolution and, possibly, hydrogen oxidation. To overcome the mutual insolubility of silver and nickel, we employ electron-beam physical vapor codeposition, a low-temperature synthetic route to metastable alloys. This method also produces flat and uniform films that facilitate the measurement of intrinsic catalytic activity with minimal variations in the surface area, ohmic contact, and pore transport. Rotating-disk-electrode measurements demonstrate that the hydrogen evolution activity per geometric area of the most active catalyst in this study, Ni0.75Ag0.25, is approximately twice that of pure nickel and has comparable stability and hydrogen oxidation activity. Our experimental results are supported by density functional theory calculations, which show that bulk alloying of Ni and Ag creates a variety of adsorption sites, some of which have near-optimal hydrogen binding energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...