Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4978, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862537

RESUMEN

The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.

2.
Nano Lett ; 24(25): 7681-7687, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874562

RESUMEN

The rare-earth telluride compound EuTe4 exhibits a charge density wave (CDW) and an unconventional thermal hysteresis transition. Herein, we report a comprehensive study of the CDW states in EuTe4 by using low-temperature scanning tunneling microscopy. Two types of charge orders are observed at 4 K, including a newly discovered spindle-shaped pattern and a typical stripe-like pattern. As an exotic charge order, the spindle-shaped CDW is off-axis and barely visible at 77 K, indicating that it is a hidden order developed at low temperature. Based on our first-principles calculations, we reveal the origins of the observed electronic instabilities. The spindle-shaped charge order stems from a subsequent transition based on the stripe-like CDW phase. Our work demonstrates that the competition and cooperation between multiple charge orders can generate exotic quantum phases.

3.
Nat Commun ; 15(1): 4406, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782991

RESUMEN

The photoinduced non-thermalized hot electrons at an interface play a pivotal role in determining plasmonic driven chemical events. However, understanding non-thermalized electron dynamics, which precedes electron thermalization (~125 fs), remains a grand challenge. Herein, we simultaneously captured the dynamics of both molecules and non-thermalized electrons in the MXene/molecule complexes by femtosecond time-resolved spectroscopy. The real-time observation allows for distinguishing non-thermalized and thermalized electron responses. Differing from the thermalized electron/heat transfer, our results reveal two non-thermalized electron dynamical pathways: (i) the non-thermalized electrons directly transfer to attached molecules at an interface within 50 fs; (ii) the non-thermalized electrons scatter at the interface within 125 fs, inducing adsorbed molecules heating. These two distinctive pathways are dependent on the irradiating wavelength and the energy difference between MXene and adsorbed molecules. This research sheds light on the fundamental mechanism and opens opportunities in photocatalysis and interfacial heat transfer theory.

4.
Nano Lett ; 24(22): 6592-6600, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787539

RESUMEN

Monolayer transition metal dichalcogenides exhibit valley-dependent excitonic characters with a large binding energy, acting as the building block for future optoelectronic functionalities. Herein, combined with pump-probe ultrafast transient transmission spectroscopy and theoretical simulations, we reveal the chirality-dependent trion dynamics in h-BN encapsulated monolayer tungsten disulfide. By resonantly pumping trions in a single valley and monitoring their temporal evolution, we identify the temperature-dependent competition between two relaxation channels driven by chirality-dependent scattering processes. At room temperature, the phonon-assisted upconversion process predominates, converting excited trions to excitons within the same valley on a sub-picosecond (ps) time scale. As temperature decreases, this process becomes less efficient, while alternative channels, notably valley depolarization process for trions, assume importance, leading to an increase of trion density in the unpumped valley within a ps time scale. Our time-resolved valley-contrast results provide a comprehensive insight into trion dynamics in 2D materials, thereby advancing the development of novel valleytronic devices.

5.
Nano Lett ; 24(21): 6278-6285, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758393

RESUMEN

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn4, as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn4 via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

6.
Nat Commun ; 15(1): 2670, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531879

RESUMEN

The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers' pair of minibands can be Z 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers' minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

7.
Phys Rev Lett ; 132(1): 016603, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242673

RESUMEN

Interactions between light and matter allow the realization of out-of-equilibrium states in quantum solids. In particular, nonlinear phononics is one of the most efficient approaches to realizing the stationary electronic state in nonequilibrium. Herein, by an extended ab initio molecular dynamics method, we identify that long-lived light-driven quasistationary geometry could stabilize the topological nature in the material family of HgTe compounds. We show that coherent excitation of the infrared-active phonon mode results in a distortion of the atomic geometry with a lifetime of several picoseconds. We show that four Weyl points are located exactly at the Fermi level in this nonequilibrium geometry, making it an ideal long-lived metastable Weyl semimetal. We propose that such a metastable topological phase can be identified by photoelectron spectroscopy of the Fermi arc surface states or ultrafast pump-probe transport measurements of the nonlinear Hall effect.

8.
Nano Lett ; 23(22): 10282-10289, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37906179

RESUMEN

Quasiparticles consisting of correlated electron(s) and hole(s), such as excitons and trions, play important roles in the optical phenomena of van der Waals semiconductors and serve as unique platforms for studies of many-body physics. Herein, we report a gate-tunable exciton-to-trion transition in pressurized monolayer MoSe2, in which the electronic band structures are modulated continuously within a diamond anvil cell. The emission energies of both the exciton and trion undergo large blueshifts over 90 meV with increasing pressure. Surprisingly, the trion binding energy remains constant at 30 meV, regardless of the applied pressure. Combining ab initio density functional theory calculations and quantum Monte Carlo simulations, we find that the remarkable robustness of the trion binding energy originates from the spatially diffused nature of the trion wave function and the weak correlation between its constituent electron-hole pairs. Our findings shed light on the optical properties of correlated excitonic quasiparticles in low-dimensional materials.

9.
Nat Commun ; 14(1): 5568, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689758

RESUMEN

Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C2 symmetry as a gate medium which can break the original threefold-rotational C3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.

10.
Phys Rev Lett ; 131(11): 116401, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774306

RESUMEN

Time-periodic light field can dress the electronic states and lead to light-induced emergent properties in quantum materials. While below-gap pumping is regarded favorable for Floquet engineering, so far direct experimental evidence of momentum-resolved band renormalization still remains missing. Here, we report experimental evidence of light-induced band renormalization in black phosphorus by pumping at photon energy of 160 meV, which is far below the band gap, and the distinction between below-gap pumping and near-resonance pumping is revealed. Our Letter demonstrates light-induced band engineering upon below-gap pumping, and provides insights for extending Floquet engineering to more quantum materials.

11.
Nano Lett ; 23(17): 8106-8114, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37610427

RESUMEN

Quasi-solid-state electrolytes (QSSEs) are gaining huge popularity because of their significantly improved safety performance over nonaqueous liquid electrolytes and superior process adaptability over all-solid-state electrolytes. However, because of the existence of liquid molecules, QSSEs typically have low lithium ion transference numbers and compromised thermal stability. In this work, we present the fabrication of a well-rounded QSSE by introducing hexagonal boron nitride nanoflakes (BNNFs) as an inorganic filler in a poly(vinylene carbonate) matrix. BNNFs, in contrast to most inorganic fillers used as anion trappers, are used to build fast lithium ion transport pathways directly on their two-dimensional surfaces. We confirm the attractive coupling between lithium ions and BNNFs, and we confirm that with the help of BNNFs, lithium ions can migrate with less damping and a lower transport energy barrier. As a result, the designed electrolyte exhibits good ion transportability, promoted fire retardancy, and good compatibility with lithium metal anodes and commercial cathodes.

12.
Nano Lett ; 23(11): 5048-5054, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276184

RESUMEN

MnBi2Te4, an antiferromagnetic topological insulator, was theoretically predicted to have a gapped surface state on its (111) surface. However, a much smaller gapped or even gapless surface state has been observed experimentally, which is thought to be caused by the defects in MnBi2Te4. Here, we have theoretically identified the antisite MnBi and BiMn as dominant defects and revealed their evolution during the phase transition from MnTe/Bi2Te3 to MnBi2Te4. We found that the complete elimination of MnBi and BiMn defects in MnBi2Te4 by simple annealing is almost impossible due to the high migration barrier in kinetics. Moreover, the gap of the Dirac point-related bands in a MnBi2Te4 monolayer would be eliminated with an increasing concentration of MnBi and BiMn defects, which could explain the experimentally unobserved large-gap surface state in MnBi2Te4. Our results provide an insight into the theoretical understanding of the quality and the experimentally measured topological properties of the synthesized MnBi2Te4.

13.
Nature ; 614(7946): 75-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725995

RESUMEN

Time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials1-3, cold atoms4 and photonic systems5 through hybridization with photon-dressed Floquet states6 in the strong-coupling limit, dubbed Floquet engineering. Such interaction leads to tailored properties of quantum materials7-11, for example, modifications of the topological properties of Dirac materials12,13 and modulation of the optical response14-16. Despite extensive research interests over the past decade3,8,17-20, there is no experimental evidence of momentum-resolved Floquet band engineering of semiconductors, which is a crucial step to extend Floquet engineering to a wide range of solid-state materials. Here, on the basis of time and angle-resolved photoemission spectroscopy measurements, we report experimental signatures of Floquet band engineering in a model semiconductor, black phosphorus. On near-resonance pumping at a photon energy of 340-440 meV, a strong band renormalization is observed near the band edges. In particular, light-induced dynamical gap opening is resolved at the resonance points, which emerges simultaneously with the Floquet sidebands. Moreover, the band renormalization shows a strong selection rule favouring pump polarization along the armchair direction, suggesting pseudospin selectivity for the Floquetband engineering as enforced by the lattice symmetry. Our work demonstrates pseudospin-selective Floquet band engineering in black phosphorus and provides important guiding principles for Floquet engineering of semiconductors.

14.
Nat Mater ; 21(7): 773-778, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35710630

RESUMEN

Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP2), where the bound electron-hole pair is composed of electrons confined within one-dimensional phosphorus-phosphorus chains and holes extended in two-dimensional SiP2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP2 as a platform for the study of excitonic physics and many-particle effects.

16.
Adv Mater ; 34(24): e2200487, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393740

RESUMEN

The discovery of the anomalous Hall effect in noncollinear antiferromagnetic metals represents one of the most important breakthroughs for the emergent antiferromagnetic spintronics. The tuning of chemical potential has been an important theoretical approach to varying the anomalous Hall conductivity, but the direct experimental demonstration has been challenging owing to the large carrier density of metals. In this work, an ultrathin noncollinear antiferromagnetic Mn3 Ge film is fabricated and its carrier density is modulated by ionic liquid gating. Via a small voltage of ≈3 V, its carrier density is altered by ≈90% and, accordingly, the anomalous Hall effect is completely switched off. This work thus creates an attractive new way to steering the anomalous Hall effect in noncollinear antiferromagnets.

17.
Nano Lett ; 22(3): 918-925, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080413

RESUMEN

We report on in situ low-temperature (4 K) scanning tunneling microscope measurements of atomic and electronic structures of the cleaved surfaces of an alkali-based kagome metal RbV3Sb5 single crystals. We find that the dominant pristine surface exhibits Rb-1×1 structure, in which a unique unidirectional √3a0 charge order is discovered. As the sample temperature slightly rises, Rb-√3×1 and Rb-√3×√3 reconstructions form due to desorption of surface Rb atoms. Our conductance mapping results demonstrate that Rb desorption not only gives rise to hole doping but also reconstructs the electronic band structures. Surprisingly, we find a ubiquitous gap opening near the Fermi level in tunneling spectra on all the surfaces despite their large differences of hole-carrier concentration, indicating an orbital-selective band reconstruction in RbV3Sb5. The Rb desorption induced electronic reconstructions are further confirmed by our density functional theory calculations.

18.
Nat Commun ; 12(1): 809, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547287

RESUMEN

The discovery of ferromagnetic two-dimensional van der Waals materials has opened up opportunities to explore intriguing physics and to develop innovative spintronic devices. However, controllable synthesis of these 2D ferromagnets and enhancing their stability under ambient conditions remain challenging. Here, we report chemical vapor deposition growth of air-stable 2D metallic 1T-CrTe2 ultrathin crystals with controlled thickness. Their long-range ferromagnetic ordering is confirmed by a robust anomalous Hall effect, which has seldom been observed in other layered 2D materials grown by chemical vapor deposition. With reducing the thickness of 1T-CrTe2 from tens of nanometers to several nanometers, the easy axis changes from in-plane to out-of-plane. Monotonic increase of Curie temperature with the thickness decreasing from ~130.0 to ~7.6 nm is observed. Theoretical calculations indicate that the weakening of the Coulomb screening in the two-dimensional limit plays a crucial role in the change of magnetic properties.

19.
Hellenic J Cardiol ; 61(1): 26-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-29890280

RESUMEN

OBJECTIVE: Most pulmonary arterial hypertension (PAH) biomarkers are used for risk stratification and prognosis prediction. We aimed to evaluate the diagnostic value of circulating serum miR-509-3p in PAH with congenital heart disease. METHODS: Preoperative blood samples were collected from patients who were diagnosed as having PAH and had to receive right ventricular catheterization. According to right ventricular catheterization results, these patients were divided into a control group with normal mean pulmonary artery pressure (mPAP < 20 mmHg) and a PAH group (mPAP ≥ 25 mmHg). The expression of serum miR-509-3p was detected by real-time quantitative PCR. The receiver operating characteristic curve was plotted. A dichotomous logistic regression model was also established. RESULTS: The expression level of circulating serum miR-509-3p in the PAH group was significantly lower than that of the control group. Based on the relative expression of miR-509-3p in serum, the area under the curve (AUC) for single-factor diagnosis of PAH was 0.694 (95% confidence interval [CI]: 0.555-0.883, P = 0.01), which was approximately 0.81 (AUC of noninvasive screening by echocardiography). When the relative expression of miR-509-3p was 0.79, the sensitivity and specificity were 80% and 60%, respectively. Based on the established model, AUC of serum miR-509-3p combined with echocardiography was 0.844, thus indicating a high diagnostic value. Compared with two individual indices, the combination further enhanced the diagnostic efficiency. CONCLUSIONS: The expression of miR-509-3p decreased in the serum of patients with PAH along with congenital heart disease. The diagnostic value of circulating serum miR-509-3p in PAH was close to that obtained by echocardiography. Combining the two indices further increased the diagnostic efficiency of PAH.


Asunto(s)
Cardiopatías Congénitas/complicaciones , MicroARNs/sangre , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/genética , Adulto , Presión Arterial/fisiología , Biomarcadores/sangre , Cateterismo Cardíaco/métodos , Estudios de Casos y Controles , Ecocardiografía/métodos , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/cirugía , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Medición de Riesgo , Sensibilidad y Especificidad
20.
Nat Commun ; 9(1): 5289, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538249

RESUMEN

Electrochemical intercalation of ions into the van der Waals gap of two-dimensional (2D) layered materials is a promising low-temperature synthesis strategy to tune their physical and chemical properties. It is widely believed that ions prefer intercalation into the van der Waals gap through the edges of the 2D flake, which generally causes wrinkling and distortion. Here we demonstrate that the ions can also intercalate through the top surface of few-layer MoS2 and this type of intercalation is more reversible and stable compared to the intercalation through the edges. Density functional theory calculations show that this intercalation is enabled by the existence of natural defects in exfoliated MoS2 flakes. Furthermore, we reveal that sealed-edge MoS2 allows intercalation of small alkali metal ions (e.g., Li+ and Na+) and rejects large ions (e.g., K+). These findings imply potential applications in developing functional 2D-material-based devices with high tunability and ion selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...