Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Epigenetics ; 16(1): 135, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342274

RESUMEN

BACKGROUND: Controlled ovarian stimulation is a common skill of assisted reproductive technologies (ARTs). In the clinic, some females would undergo more than one controlled ovarian stimulation cycle. However, few studies have focused on the influence of multi-superovulation on oocytes and offspring. RESULTS: Here, we found that multi-superovulation disrupted the transcriptome of oocytes and that the differentially expressed genes (DEGs) were associated mainly with metabolism and fertilization. The disruption of mRNA degradation via poly (A) size and metabolism might be a reason for the reduced oocyte maturation rate induced by repeated superovulation. Multi-superovulation results in hypo-genomic methylation in oocytes. However, there was an increase in the methylation level of CGIs. The DMRs are not randomly distributed in genome elements. Genes with differentially methylated regions (DMRs) in promoters are enriched in metabolic pathways. With increasing of superovulation cycles, the glucose and insulin tolerance of offspring is also disturbed. CONCLUSIONS: These results suggest that multi-superovulation has adverse effects on oocyte quality and offspring health.


Asunto(s)
Metilación de ADN , Oocitos , Superovulación , Oocitos/metabolismo , Metilación de ADN/genética , Femenino , Superovulación/genética , Superovulación/efectos de los fármacos , Animales , Humanos , Transcriptoma/genética , Ratones , Inducción de la Ovulación/métodos , Islas de CpG/genética
2.
EMBO J ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256562

RESUMEN

Phosphorylation is a key post-translational modification regulating protein function and biological outcomes. However, the phosphorylation dynamics orchestrating mammalian oocyte development remains poorly understood. In the present study, we apply high-resolution mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of mouse oocyte phosphorylation. Of more than 8000 phosphosites, 75% significantly oscillate and 64% exhibit marked upregulation during meiotic maturation, indicative of the dominant regulatory role. Moreover, we identify numerous novel phosphosites on oocyte proteins and a few highly conserved phosphosites in oocytes from different species. Through functional perturbations, we demonstrate that phosphorylation status of specific sites participates in modulating critical events including metabolism, translation, and RNA processing during meiosis. Finally, we combine inhibitor screening and enzyme-substrate network prediction to discover previously unexplored kinases and phosphatases that are essential for oocyte maturation. In sum, our data define landscape of the oocyte phosphoproteome, enabling in-depth mechanistic insights into developmental control of germ cells.

3.
Adv Sci (Weinh) ; 11(30): e2309184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38868907

RESUMEN

It has been widely reported that obesity adversely impacts reproductive performance of females. However, the effects of maternal obesity on fetal germ cells remain poorly understood. In the present study, by employing a high-fat diet (HFD)-based mouse model, it is discovered that maternal obesity disrupts the chromosomal synapsis and homologous recombination during fetal oogenesis. Moreover, transcriptomic profiling reveales the potential molecular network controlling this process. Of note, the global hypermethylation of genomic DNA in fetal oocytes from obese mouse is detected. Importantly, time-restricted feeding (TRF) of obese mice not only ameliorate the meiotic defects, but also partly restore the epigenetic remodeling in fetal oocytes. In sum, the evidence are provided showing the deficit fetal oogenesis in obese mother, implicating a mechanism underlying the intergenerational effects of environmental insults. TRF may represent a potentially effective approach for mitigating fertility issues in obese patients.


Asunto(s)
Modelos Animales de Enfermedad , Epigénesis Genética , Meiosis , Obesidad Materna , Oocitos , Animales , Femenino , Ratones , Oocitos/metabolismo , Meiosis/genética , Epigénesis Genética/genética , Obesidad Materna/metabolismo , Obesidad Materna/genética , Embarazo , Dieta Alta en Grasa/efectos adversos , Oogénesis/genética , Ratones Endogámicos C57BL , Metilación de ADN/genética , Obesidad/genética , Obesidad/metabolismo
4.
BMC Biol ; 21(1): 43, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829148

RESUMEN

BACKGROUND: Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS: Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS: These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.


Asunto(s)
Desnutrición , Enfermedades Metabólicas , Ratones , Animales , Femenino , Epigénesis Genética , Metilación de ADN , Oocitos
5.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677838

RESUMEN

A novel hydrogen bond surrogate-based (HBS) α-helix mimetic was designed by the combination of covalent H-bond replacement and the use of an ether linkage to substitute an amide bond within a short peptide sequence. The new helix template could be placed in position other than the N-terminus of a short peptide, and the CD studies demonstrate that the template adopts stable conformations in aqueous buffer at exceptionally high temperatures.

6.
Mol Cell Proteomics ; 22(1): 100481, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496143

RESUMEN

Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1-Cullin-Fbox pathway and an increase in mRNA decay-related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.


Asunto(s)
Proteoma , Proteómica , Ratones , Animales , Proteoma/metabolismo , Oogénesis , Oocitos/metabolismo , Núcleo Celular/metabolismo , Meiosis
7.
Cell Death Dis ; 13(5): 474, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589679

RESUMEN

Psoriasis, an immune-mediated inflammatory disease, is associated with poor pregnancy outcomes. Emerging evidence indicates that these defects are likely attributed to compromised oocyte competence. Nevertheless, little is known about the underlying associated mechanisms between psoriasis and poor oocyte quality. In this study, we construct an imiquimod-induced chronic psoriasis-like mouse model to review the effects of psoriasis on oocyte quality. We discover that oocytes from psoriasis-like mice display spindle/chromosome disorganization, kinetochore-microtubule mis-attachment, and aneuploidy. Importantly, our results show that melatonin supplement in vitro and in vivo not only increases the rate of matured oocytes but also significantly attenuates oxidative stress and meiotic defects by restoring mitochondrial function in oocytes from psoriasis-like mice. Altogether, our data uncover the adverse effects of psoriasis symptoms on oocytes, and melatonin supplement ameliorates oxidative stress and meiotic defects of oocytes from psoriatic mice.


Asunto(s)
Melatonina , Psoriasis , Animales , Femenino , Meiosis , Melatonina/farmacología , Ratones , Mitocondrias/metabolismo , Oocitos/metabolismo , Estrés Oxidativo , Embarazo , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/metabolismo , Huso Acromático/metabolismo
8.
Org Lett ; 23(7): 2616-2620, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33736433

RESUMEN

Mycotoxin cyclochlorotine (1) and structurally related astins are cyclic pentapeptides containing unique nonproteinogenic amino acids, such as ß-phenylalanine, l-allo-threonine, and 3,4-dichloroproline. Herein, we report the biosynthetic pathway for 1, which involves intriguing tailoring processes mediated by DUF3328 proteins, including stereo- and regiospecific chlorination and hydroxylation and intramolecular O,N-transacylation. Our findings demonstrate that DUF3328 proteins, which are known to be involved in oxidative cyclization of fungal ribosomal peptides, have much higher functional diversity than previously expected.


Asunto(s)
Proteínas Fúngicas/genética , Micotoxinas/química , Péptidos Cíclicos/biosíntesis , Fenilalanina/química , Acilación , Aminoácidos/metabolismo , Vías Biosintéticas , Ciclización , Hidroxilación , Estructura Molecular , Micotoxinas/metabolismo , Oxidación-Reducción , Péptidos Cíclicos/química
9.
Front Cell Dev Biol ; 9: 617225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33553179

RESUMEN

Maternal obesity impairs oocyte quality and embryo development. However, the potential molecular pathways remain to be explored. In the present study, we examined the effects of obesity on telomere status in oocytes and embryos obtained from mice fed with high-fat diet (HFD). Of note, telomere shortening was observed in both oocytes and early embryos from obese mice, as evidenced by the reduced expression of telomerase reverse transcriptase and activity of telomerase. Moreover, quantitative analysis of telomere dysfunction-induced foci (TIFs) revealed that maternal obesity induces the defective telomeres in oocytes and embryos. Meanwhile, the high frequency of aneuploidy was detected in HFD oocytes and embryos as compared to controls, accompanying with the increased incidence of apoptotic blastocysts. In conclusion, these results indicate that telomere dysfunction might be a molecular pathway mediating the effects of maternal obesity on oocyte quality and embryo development.

10.
Front Cell Dev Biol ; 9: 625805, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33553183

RESUMEN

FK506 binding proteins 25 (FKBP25) has been shown to function in ribosome biogenesis, chromatin organization, and microtubule stability in mitosis. However, the role of FKBP25 in oocyte maturation has not been investigated. Here, we report that oocytes with FKBP25 depletion display abnormal spindle assembly and chromosomes alignment, with defective kinetochore-microtubule attachment. Consistent with this finding, aneuploidy incidence is also elevated in oocytes depleted of FKBP25. Importantly, FKBP25 protein level in old oocytes is significantly reduced, and ectopic expression of FKBP25 could partly rescue the aging-associated meiotic defects. In addition, by employing site-specific mutagenesis, we identify that serine 163 is a major, if not unique, phosphorylation site modulating the action of FKBP25 on meiotic maturation. In summary, our data indicate that FKBP25 is a pivotal factor for determining oocyte quality, and may mediate the effects of maternal aging on female reproduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA