Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 495
1.
Article En | MEDLINE | ID: mdl-38837920

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

2.
Front Neurosci ; 18: 1368552, 2024.
Article En | MEDLINE | ID: mdl-38716255

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

3.
RSC Adv ; 14(21): 14964-14972, 2024 May 02.
Article En | MEDLINE | ID: mdl-38737648

Mn-based high voltage cathodes, e.g., spinel LiMn2O4, are considered among the most promising materials for cost-effective, next generation energy storage. When paired with a Li metal anode, secondary batteries based on Li||LiMn2O4 in principle offer a straightforward, scalable approach for achieving cost-effective and high energy density storage demanded in applications. In practice, however, such batteries fail to live up to their promise. Rapid capacity fading caused by irreversible Mn dissolution at the cathode coupled with mossy/dendritic Li deposition at the anode limit their useful life. In this study, we report on the design of electrolytes based on a binary blend of two widely available salts, LiNO3 and LiTFSI, in ethylene carbonate (EC), which simultaneously overcome failure modes at both the cathode and anode of Li||LiMn2O4 batteries. The electrolyte design is motivated by a recent finding that compared with their linear counterparts (e.g., dimethyl carbonate), cyclic carbonates like EC dissolve considerably larger amount of LiNO3, which markedly improves anode reversibility. On the other hand, it is known that nonsolvolytic fluorine-containing Li salts like LiTFSI, lowers the electrolyte's susceptibility to solvolysis, which generates HF species responsible for Mn leaching at the cathode. In particular, we report instead that fluorine groups in the TFSI salt, promote formation of a favorable, fluorine-rich interphase on the Li metal anode. Electrochemical measurements show that the electrolytes enable remarkably improved charge-discharge cycling stability (>1000 charge-discharge cycles) of Li||LiMn2O4 batteries. In-depth atomic-resolution electron microscopy and X-ray/synchrotron diffraction experiments reveal the fundamental source of the improvements. The measurements show that crystallographic degradation of Mn-based cathodes (e.g., surface Mn leaching and bulk defect generation) upon cycling in conventional electrolytes is dramatically lowered in the LiNO3 + LiTFSI/EC electrolyte system. It is shown further that the reduction of Mn dissolution not only improves the cathode stability but improves the reversibility of the Li metal anode via a unique re-deposition mechanism in which Li and Mn co-deposit on the anode. Taken together, our findings show that the LiNO3 + LiTFSI/EC electrolyte system holds promise for accelerating progress towards practical Li||LiMn2O4 batteries because it stabilizes the dynamic interfaces required for long-term stability at both the Li anode and the LiMn2O4 cathode.

4.
Article En | MEDLINE | ID: mdl-38819179

Background: Oral health is crucial for overall well-being, and periodontal disease can lead to serious complications such as intraosseous defects. In recent years, local administration of 1% melatonin gel has been explored as a potential treatment option for intraosseous defects. However, its efficacy compared to traditional non-surgical periodontal therapy (NSPT) is not fully understood. Primary Study Objective: To evaluate and compare the efficacy of 1% melatonin gel local administration with non-surgical periodontal therapy (NSPT) in the treatment of stage I and stage IV periodontal bone defects. Methods/Design: One hundred participants diagnosed with stage I and stage IV periodontal disease were recruited from Hangzhou Younuo Dental Clinic between December 2020 and March 2022. The participants were divided into two groups: a study group and a control group. The study group received local administration of 1% melatonin gel, while the control group received non-surgical periodontal therapy (NSPT). Oral examinations, including X-ray examinations, were conducted to assess the severity of bone defects before treatment initiation. The primary outcome measures included treatment efficacy, periodontal indicators (PD and BI levels), inflammatory response indicators (IL-1ß, IL-6, and TNF-α levels), bone defect heights, and alveolar bone densities. Results: The treatment efficacy in the study group was significantly higher than that in the control group (95% CI -3.0 to -1.8, P = .011). Post-treatment, the study group had lower PD and BI levels compared to the control group (95% CI -1.0 to -0.8, P < .001; 95% CI -1·2 to -0.7, P < .001). Post-treatment, the study group had lower levels of IL-1ß, IL-6, and TNF-α compared to the control group, (95% CI 0.3 to -0.8, P < .001; 95% CI -4.1 to -2.1, P < .001; 95% CI -3.5 to -1.6, P < .001). Post-treatment, the study group had lower bone defect heights and higher alveolar bone densities compared to the control group (95% CI 0.7 to 1.1, P = .028; 95% CI -2.2 to -1·8, P < .001). Conclusion: Local administration of 1% melatonin gel may be an effective treatment option for improving bone defects, enhancing periodontal indicators, alleviating inflammatory responses, and improving oral health in patients with stage I and stage IV periodontal disease.

5.
Front Plant Sci ; 15: 1385210, 2024.
Article En | MEDLINE | ID: mdl-38721336

Understanding the genetic basis of local adaption is crucial in the context of global climate change. Mangroves, as salt-tolerant trees and shrubs in the intertidal zone of tropical and subtropical coastlines, are particularly vulnerable to climate change. Kandelia obovata, the most cold-tolerant mangrove species, has undergone ecological speciation from its cold-intolerant counterpart, Kandelia candel, with geographic separation by the South China Sea. In this study, we conducted whole-genome re-sequencing of K. obovata populations along China's southeast coast, to elucidate the genetic basis responsible for mangrove local adaptation to climate. Our analysis revealed a strong population structure among the three K. obovata populations, with complex demographic histories involving population expansion, bottleneck, and gene flow. Genome-wide scans unveiled pronounced patterns of selective sweeps in highly differentiated regions among pairwise populations, with stronger signatures observed in the northern populations compared to the southern population. Additionally, significant genotype-environment associations for temperature-related variables were identified, while no associations were detected for precipitation. A set of 39 high-confidence candidate genes underlying local adaptation of K. obovata were identified, which are distinct from genes under selection detected by comparison between K. obovata and its cold-intolerant relative K. candel. These results significantly contribute to our understanding of the genetic underpinnings of local adaptation in K. obovata and provide valuable insights into the evolutionary processes shaping the genetic diversity of mangrove populations in response to climate change.

6.
JACS Au ; 4(4): 1365-1373, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38665677

Controlling the morphological evolution of electrochemical crystal growth in battery anodes is of fundamental and practical importance, particularly towards realizing practical, high-energy batteries based on metal electrodes. Such batteries require highly reversible plating/stripping reactions at the anode to achieve a long cycle life. While conformal electrodeposition and electrode reversibility have been demonstrated in numerous proof-of-concept experiments featuring moderate to low areal capacity (≤3 mA h/cm2) electrodes, achieving high levels of reversibility is progressively challenging at the higher capacities (e.g., 10 mA h/cm2), required in applications. Nonplanar, "3D" electrodes composed of electrically conductive, porous substrates are conventionally thought to overcome trade-offs between reversibility and capacity because they hypothetically "host" the electrodeposits in an electronically conducting framework, providing redundant pathways for electron flow. Here, we challenge this hypothesis and instead show that a nonplanar substrate with moderate electrical conductivity (ideally, with an electrical conductance similar to the ionic conductance of the electrolyte) and composed of a passivated cathode-facing surface efficiently regulates electro-crystallization. In contrast, an architecture with a high intrinsic electrical conductivity or with a high electrical conductivity coating on the front surface results in dominantly out-of-plane growth, making the 3D architecture in effect function as a 2D substrate. Using Zn as an example, we demonstrate that interconnected carbon fiber substrates coated by SiO2 on the front and Cu on the back successfully ushers electroplated Zn metal into the 3D framework at a macroscopic length scale, maximizing use of the interior space of the framework. The effective integration of electrodeposits into the 3D framework also enables unprecedented plating/stripping reversibility >99.5% at high current density (e.g., 10 mA/cm2) and high areal capacities (e.g., 10 mA h/cm2). Used in full-cell Zn||NaV3O8 batteries with stringent N/P ratios of 3:1, the substrates are also shown to enhance cycle life.

8.
Patient Prefer Adherence ; 18: 709-720, 2024.
Article En | MEDLINE | ID: mdl-38524198

Background: Colorectal, and gastric cancers have the second, and fourth mortality rates worldwide, respectively. Endoscopic screening is a crucial diagnostic tool for colorectal, and gastric cancers. Effective interventions can improve adherence to endoscopic screening in high-risk populations, which is important for cancer prevention and mortality reduction. This study aimed to identify interventions that could improve adherence to endoscopic screening for cancer in high-risk populations. Methods: Combination keywords including colorectal cancer, gastric cancer, screening adherence, and interventions were used to search for articles in PubMed, Web of Science, Cochrane Library, and MEDLINE Complete. The review methodology was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-SCR). Results: A total of 12 articles were included in this review: 9 randomized controlled trials(RCT) and 3 quasi-experimental studies(QEDs). Among the extracted studies, 11 were about colorectal cancer, and 1 was about gastric cancer. Most studies used lecture-based or Information Technology-based health education interventions. Narrative interventions have proven to be novel and effective approaches for promoting adherence to endoscopic screening. Health education interventions included cancer epidemiology, cancer risk factors, warning symptoms, and screening methods. Conclusion: All interventions involved were effective in increasing individual knowledge of cancer-related endoscopic screening, willingness to undergo screening, and screening behaviors. These findings provide a reference for designing endoscopy-related cancer screening interventions.

9.
Sci Rep ; 14(1): 7424, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548897

The Zika virus (ZIKV) is a serious global public health crisis. A major control challenge is its multiple transmission modes. This paper aims to simulate the transmission patterns of ZIKV using a dynamic process-based epidemiological model written in ordinary differential equations, which incorporates the human-to-mosquito infection by bites and sewage, mosquito-to-human infection by bites, and human-to-human infection by sex. Mathematical analyses are carried out to calculate the basic reproduction number and backward bifurcation, and prove the existence and stability of the equilibria. The model is validated with infection data by applying it to the 2015-2016 ZIKV epidemic in Brazil. The results indicate that the reproduction number is estimated to be 2.13, in which the contributions by mosquito bite, sex and sewage account for 85.7%, 3.5% and 10.8%, respectively. This number and the morbidity rate are most sensitive to parameters related to mosquito ecology, rather than asymptomatic or human-to-human transmission. Multiple transmission routes and suitable temperature exacerbate ZIKV infection in Brazil, and the vast majority of human infection cases were prevented by the intervention implemented. These findings may provide new insights to improve the risk assessment of ZIKV infection.


Aedes , Epidemics , Zika Virus Infection , Zika Virus , Animals , Humans , Brazil/epidemiology , Sewage
10.
Public Health Nurs ; 41(3): 476-486, 2024.
Article En | MEDLINE | ID: mdl-38468509

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer mortality. HCC has high morbidity, high mortality, and low survival rates. Screening is one of the most significant methods of lowering incidence and death while also increasing survival. OBJECTIVES: The aim of this study was to identify the facilitators and barriers to participation in HCC screening among high-risk populations. METHODS: A comprehensive and systematic search was undertaken in PubMed, Web of Science, MEDLINE, EMBACE, EBSCOhost and the Cochrane Library. A combination of synonyms of the keywords including HCC, screening, factors and adherence were used for searching. Studies addressing the facilitators and barriers to HCC screening compliance in at-risk individuals were included. Data were synthesized using Review Manager version 5.4. A random/fixed effects model meta-analysis was performed to estimate the pooled data and expressed with odds ratio (OR) and 95% confidence interval (CI). RESULTS: A total of seven articles met the inclusion criteria. Qualitative (n = 1) and quantitative (n = 6) studies using various types of surgery were conducted. The most commonly mentioned barriers were insufficient knowledge and awareness of HCC screening, unawareness of the necessity for early detection of HCC and lack of physician recommendation. A meta-analysis of seven studies showed that individuals with a family history of HCC increased screening uptake by nearly three times (OR: 2.69, 95% CI: 1.93, 3.75). Other most frequently reported facilitators include age, education level, and perceived risk et al. CONCLUSIONS: Many barriers to HCC screening were found. Meanwhile, this review points out that improving the awareness of high-risk populations toward HCC screening is expected to enhance compliance, thereby promoting early diagnosis of liver cancer, reducing mortality, and alleviating the burden of HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Incidence
11.
Proc Natl Acad Sci U S A ; 121(14): e2302967120, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38547063

It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.

12.
Lancet Microbe ; 5(5): e442-e451, 2024 May.
Article En | MEDLINE | ID: mdl-38467129

BACKGROUND: The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB. METHODS: We searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level. FINDINGS: We retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species. INTERPRETATION: The predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions. FUNDING: National Key Research and Development Program of China.


Borrelia , Relapsing Fever , Borrelia/isolation & purification , Humans , Relapsing Fever/epidemiology , Relapsing Fever/microbiology , Relapsing Fever/diagnosis , Animals
13.
PeerJ ; 12: e16935, 2024.
Article En | MEDLINE | ID: mdl-38435998

Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method: Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result: TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion: In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cellular Senescence/genetics , Breast , Aggression , Biological Assay , Tumor Microenvironment/genetics
14.
ACS Appl Bio Mater ; 7(3): 1694-1702, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38373327

Mouthguards are used to reduce injuries and the probability of them to orofacial tissues when impacted during sports. However, the usage of a mouthguard is low due to the discomfort caused by the thickness of the mouthguard. Herein, we have constructed a dynamic dual network to fabricate a shear-stiffening mouthguard with remoldability, which are called remoldable shear-stiffening mouthguards (RSSMs). Based on diboron/oxygen dative bonds, RSSMs show a shear-stiffening effect and excellent shock absorption ability, which can absorb more than 90% of the energy of a blank. Even reducing the thickness to half, RSSMs can reduce approximately 25% of the transmitted force and elongate by about 1.6-fold the buffer time compared to commercial mouthguard materials (Erkoflex and Erkoloc-pro). What is more, owing to the dynamic dual network, RSSMs show good remolding performance with unchanged shear-stiffening behavior and impact resistance, which conforms to the existing vacuum thermoforming mode. In addition, RSSMs exhibit stability in artificial saliva and biocompatibility. In conclusion, this work will broaden the range of mouthguard materials and offer a platform to apply shear-stiffening materials to biomedical applications and soft safeguarding devices.


Mouth Protectors , Equipment Design
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 183-189, 2024 Jan 20.
Article Zh | MEDLINE | ID: mdl-38322527

Objective: To develop a catalytic hairpin assembly (CHA)-based fluorescent assay for the detection of the target RNA of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), so as to realize the rapid nucleic acid testing of SARS-CoV-2. Methods: A 24-nt segment of the SARS-CoV-2 nucleocapsid protein gene (N gene, NC_045512.2) was chosen as the target RNA and the hairpin motif 1 (H1) and hairpin motif 2 (H2) were designed based on the principle of CHA reaction. The H1 motif was labelled with a fluorophore group as well as a quencher group. When the target RNA was added to the hairpin motifs, CHA reaction was triggered at room temperature (25 ℃), which led to the amplification of fluorescence signal, thereby enabling the rapid detection of the target RNA. After the optimization of the hairpin motifs and the experimental conditions, the sensitivity and the specificity of the testing method were measured to evaluate its performance. Results: We successfully constructed a CHA-based fluorescent assay specifically for the target RNA of SARS-CoV-2. With this method, testing could be completed at room temperature within 30 min. This testing method exhibited excellent specificity and could be used to accurately distinguish the perfectly-matched target RNA from the target RNA with single-base mutations. In addition, the testing method demonstrated good sensitivity, with a detection limit of 50 pmol/L. Conclusion: The proposed assay enables the simple and rapid detection of the SARS-CoV-2 target RNA with excellent sensitivity and specificity, showing great promise for further optimization and subsequent clinical application for the rapid detection of SARS-CoV-2 nucleic acid.


COVID-19 , SARS-CoV-2 , Humans , Sensitivity and Specificity , RNA , Nucleic Acid Amplification Techniques/methods
16.
Exp Cell Res ; 436(2): 113924, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38280435

Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.


Adenine/analogs & derivatives , MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Animals , Mice , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/pathology , Mice, Nude , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
17.
BMC Cancer ; 24(1): 72, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38218811

BACKGROUND: Radiotherapy (RT) is an effective and available local treatment for patients with refractory or relapsed (R/R) aggressive B-cell lymphomas. However, the value of hypofractionated RT in this setting has not been confirmed. METHODS: We retrospectively analyzed patients with R/R aggressive B-cell lymphoma who received hypofractionated RT between January 2020 and August 2022 at a single institution. The objective response rate (ORR), overall survival (OS), progression-free survival (PFS) and acute side effects were analyzed. RESULTS: A total of 30 patients were included. The median dose for residual disease was 36 Gy, at a dose per fraction of 2.3-5 Gy. After RT, the ORR and complete response (CR) rates were 90% and 80%, respectively. With a median follow-up of 10 months (range, 2-27 months), 10 patients (33.3%) experienced disease progression and three died. The 1-year OS and PFS rates for all patients were 81.8% and 66.3%, respectively. The majority (8/10) of post-RT progressions involved out-of-field relapses. Patients with relapsed diseases, no response to systemic therapy, multiple lesions at the time of RT, and no response to RT were associated with out-of-field relapses. PFS was associated with response to RT (P = 0.001) and numbers of residual sites (P < 0.001). No serious non-hematological adverse effects (≥ grade 3) associated with RT were reported. CONCLUSION: These data suggest that hypofractionated RT was effective and tolerable for patients with R/R aggressive B-cell lymphoma, especially for those that exhibited localized residual disease.


Lymphoma, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Rituximab/therapeutic use , Retrospective Studies , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/radiotherapy , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/radiotherapy , Recurrence , Lymphoma, Large B-Cell, Diffuse/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome
18.
Cancer Epidemiol ; 88: 102515, 2024 02.
Article En | MEDLINE | ID: mdl-38176331

BACKGROUND: Cutaneous malignant melanoma (CMM) causes most skin cancer deaths in the United States (US). The mortality has been decreasing in the US population. We hypothesize that this population-level reduction is mainly attributable to the treatment advances, rather than the successful primary and secondary prevention. METHODS: Using data from the Surveillance, Epidemiology, and End Results (SEER) databases, we collected the incidence, incidence-based mortality (IBM), and 5-year survival (5-YS) rates of CMM from 1994 to 2019. Trends by stage and sex were examined by joinpoint regression analyses and age-period-cohort analyses. RESULTS: The overall incidence of CMM rose by 1.6% yearly from 1994 to 2006 (95% confidence interval [CI]: 0.9% to 2.2%) and then increased with a numerical trend. And we projected the incidence will continue to increase until 2029. In contrast, the IBM for all CMM has decreased yearly by 2.8% (95% CI: -3.9% to -1.8%) since 2010 after continuously increasing by 3.8% annually (95% CI: 3.2% to 4.4%) from 1996 to 2010. For early-stage (localized and regional) CMM, we found the incidence since 2005 plateaued without further increase, while the incidence for CMM at distant stage continuously increased by 1.4% per year (95% CI: 0.9% to 2.0%). Improvements in 5-YS were observed over the study period for all CMM and were most obvious in distant stage. And significant period effects were noted around the year 2010. CONCLUSION: This study demonstrated improved survival and reduced mortality of CMM at the US population level since 2010, which were consistent with the introduction of novel therapies. Encouraging effects of primary prevention among adolescents in the most recent cohorts were found. However, the plateaued overall incidence and early diagnosis rates indicated that advances in primary and secondary prevention are very much needed to further control the burden of CMM.


Melanoma , Skin Neoplasms , Adolescent , Humans , United States/epidemiology , Melanoma/epidemiology , Melanoma/therapy , Melanoma/diagnosis , Skin Neoplasms/epidemiology , Skin Neoplasms/therapy , Skin Neoplasms/diagnosis , Incidence , Forecasting , Regression Analysis
19.
Cell Mol Immunol ; 21(2): 119-133, 2024 02.
Article En | MEDLINE | ID: mdl-38238440

The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.


COVID-19 , SARS-CoV-2 , Mice , Cricetinae , Humans , Animals , Pandemics , COVID-19 Vaccines , Ferrets , Disease Models, Animal
20.
Eur Radiol ; 34(2): 1324-1333, 2024 Feb.
Article En | MEDLINE | ID: mdl-37615763

OBJECTIVES: Artificial intelligence (AI) systems can diagnose thyroid nodules with similar or better performance than radiologists. Little is known about how this performance compares with that achieved through fine needle aspiration (FNA). This study aims to compare the diagnostic yields of FNA cytopathology alone and combined with BRAFV600E mutation analysis and an AI diagnostic system. METHODS: The ultrasound images of 637 thyroid nodules were collected in three hospitals. The diagnostic efficacies of an AI diagnostic system, FNA-based cytopathology, and BRAFV600E mutation analysis were evaluated in terms of sensitivity, specificity, accuracy, and the κ coefficient with respect to the gold standard, defined by postsurgical pathology and consistent benign outcomes from two combined FNA and mutation analysis examinations performed with a half-year interval. RESULTS: The malignancy threshold for the AI system was selected according to the Youden index from a retrospective cohort of 346 nodules and then applied to a prospective cohort of 291 nodules. The combination of FNA cytopathology according to the Bethesda criteria and BRAFV600E mutation analysis showed no significant difference from the AI system in terms of accuracy for either cohort in our multicenter study. In addition, for 45 included indeterminate Bethesda category III and IV nodules, the accuracy, sensitivity, and specificity of the AI system were 84.44%, 95.45%, and 73.91%, respectively. CONCLUSIONS: The AI diagnostic system showed similar diagnostic performance to FNA cytopathology combined with BRAFV600E mutation analysis. Given its advantages in terms of operability, time efficiency, non-invasiveness, and the wide availability of ultrasonography, it provides a new alternative for thyroid nodule diagnosis. CLINICAL RELEVANCE STATEMENT: Thyroid ultrasonic artificial intelligence shows statistically equivalent performance for thyroid nodule diagnosis to FNA cytopathology combined with BRAFV600E mutation analysis. It can be widely applied in hospitals and clinics to assist radiologists in thyroid nodule screening and is expected to reduce the need for relatively invasive FNA biopsies. KEY POINTS: • In a retrospective cohort of 346 nodules, the evaluated artificial intelligence (AI) system did not significantly differ from fine needle aspiration (FNA) cytopathology alone and combined with gene mutation analysis in accuracy. • In a prospective multicenter cohort of 291 nodules, the accuracy of the AI diagnostic system was not significantly different from that of FNA cytopathology either alone or combined with gene mutation analysis. • For 45 indeterminate Bethesda category III and IV nodules, the AI system did not perform significantly differently from BRAFV600E mutation analysis.


Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Biopsy, Fine-Needle/methods , Thyroid Neoplasms/pathology , Retrospective Studies , Prospective Studies , Artificial Intelligence
...