Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39001176

RESUMEN

Several advantages of directed energy deposition-arc (DED-arc) have garnered considerable research attention including high deposition rates and low costs. However, defects such as discontinuity and pores may occur during the manufacturing process. Defect identification is the key to monitoring and quality assessments of the additive manufacturing process. This study proposes a novel acoustic signal-based defect identification method for DED-arc via wavelet time-frequency diagrams. With the continuous wavelet transform, one-dimensional (1D) acoustic signals acquired in situ during manufacturing are converted into two-dimensional (2D) time-frequency diagrams to train, validate, and test the convolutional neural network (CNN) models. In this study, several CNN models were examined and compared, including AlexNet, ResNet-18, VGG-16, and MobileNetV3. The accuracy of the models was 96.35%, 97.92%, 97.01%, and 98.31%, respectively. The findings demonstrate that the energy distribution of normal and abnormal acoustic signals has significant differences in both the time and frequency domains. The proposed method is verified to identify defects effectively in the manufacturing process and advance the identification time.

2.
Electrophoresis ; 45(13-14): 1233-1242, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38161241

RESUMEN

The efficient and precise extraction of target particles is a crucial prerequisite for achieving accurate detection and analysis in microfluidic cell analysis. In this study, a symmetrical contraction-expansion microchannel with sheath flow was designed, aiming to extract target larger particles from particles of different sizes within the channel. This paper conducted numerical simulations to investigate the three-dimensional migration mechanisms of particles and performed experimental studies to examine the separation performance of particles with different sizes under varying flow rate ratios and different numbers of contraction-expansion structures. The experimental results indicate that at moderate sample flow rates and higher flow rate ratios, microchannels with fewer contraction-expansion structures are likely to achieve better performance in extracting target particles compared to microchannels with a greater number of these structures. Our work advances the application of viscoelastic contraction-expansion microchannels in particle separation. This device is easy to set up in parallel and significantly enhances throughput, providing an accurate and efficient solution for future particle separation applications.


Asunto(s)
Diseño de Equipo , Técnicas Analíticas Microfluídicas , Tamaño de la Partícula , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Simulación por Computador , Viscosidad
3.
Front Bioeng Biotechnol ; 11: 1281503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026856

RESUMEN

Background: Deep Vein Thrombosis (DVT) is a common disease, frequently afflicting the lower limb veins of bedridden patients. Intermittent Pneumatic Compression (IPC) is often employed as an effective solution for this problem. In our study, a random selection of 264 patients underwent IPC treatment for either one or 8 hours daily. The rate of severe venous thrombosis was substantially reduced in the IPC-treated group compared to the control group. However, real-time monitoring of blood flow during IPC operation periods remains a challenge, leading to rare awareness of IPC working mechanism on thrombosis prevention. Methods: Here, microfluidic chip methodology is used to create an in vitro vein-mimicking platform integrating venous valves in a deformable channel. Whole blood of patients after knee surgery was perfused into the venous channel at a controlled flow rate obtained from patients with IPC treatment clinically. Results: According to the numerical simulations results, both of an increase in compressive pressure and a decrease in time interval of IPC device can accelarete blood flow rate and the shear stress within the vein. The vein chip experiments also reveal that the fibrin accumulation can be greatly lowered in IPC treated group, indicating less thrombosis formation in future. A time interval of 24 seconds and a maximum contraction pressure of 40 mmHg were proved to be the most effective parameters for the IPC device adopted in our clinical trail. Conclusion: This vein chip presents a novel method for observing the functional mechanisms of IPC device for DVT prevention. It provides crucial data for further standardization and optimization of IPC devices in clinical usage.

4.
Micromachines (Basel) ; 13(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36296012

RESUMEN

Non-spherical shape is a general appearance feature for bioparticles. Therefore, a mechanical mechanism study of non-spherical particle migration in a microfluidic chip is essential for more precise isolation of target particles. With the manipulation of non-spherical particles, refined disease detection or medical intervention for human beings will be achievable in the future. In this review, fabrication and manipulation of non-spherical particles are discussed. Firstly, various fabrication methods for non-spherical microparticle are introduced. Then, the active and passive manipulation techniques for non-spherical particles are briefly reviewed, including straight inertial microchannels, secondary flow inertial microchannels and deterministic lateral displacement microchannels with extremely high resolution. Finally, applications of viscoelastic flow are presented which obviously increase the precision of non-spherical particle separation. Although various techniques have been employed to improve the performance of non-spherical particle manipulation, the universal mechanism behind this has not been fully discussed. The aim of this review is to provide a reference for non-spherical particle manipulation study researchers in every detail and inspire thoughts for non-spherical particle focused device design.

5.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888936

RESUMEN

Electrical impedance tomography (EIT) is a non-invasive, radiation-free imaging technique with a lot of promise in clinical monitoring. However, since EIT image reconstruction is a non-linear, pathological, and ill-posed issue, the quality of the reconstructed images needs constant improvement. To increase image reconstruction accuracy, a grey wolf optimized radial basis function neural network (GWO-RBFNN) is proposed in this paper. The grey wolf algorithm is used to optimize the weights in the radial base neural network, determine the mapping between the weights and the initial position of the grey wolf, and calculate the optimal position of the grey wolf to find the optimal solution for the weights, thus improving the image resolution of EIT imaging. COMSOL and MATLAB were used to numerically simulate the EIT system with 16 electrodes, producing 1700 simulation samples. The standard Landweber, RBFNN, and GWO-RBFNN approaches were used to train the sets separately. The obtained image correlation coefficient (ICC) of the test set after training with GWO-RBFNN is 0.9551. After adding 30, 40, and 50 dB of Gaussian white noise to the test set, the attained ICCs with GWO-RBFNN are 0.8966, 0.9197, and 0.9319, respectively. The findings reveal that the proposed GWO-RBFNN approach outperforms the existing methods when it comes to image reconstruction.

6.
Biomaterials ; 287: 121650, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35872554

RESUMEN

Cultured meat is meat for consumption produced in a more sustainable way. It involves cell harvesting and expansion, differentiation into myotubes, construction into muscle fibres and meat structuring. We isolated 5.3 × 104 porcine muscle stem cells from 1 g of neonatal pig muscle tissue. According to calculations, we need to expand muscle stem cells 106-107 times to produce 100 g or 1 kg of cultured meat. However, the cells gradually lost the ability to express stemness and mature muscle cell markers (PAX7, MyHC). To tackle this critical issue and maintain cell function during cell expansion, we found that long-term culture with (100 µM) l-Ascorbic acid 2-phosphate (Asc-2P) accelerated cell proliferation while preserving the muscle cell differentiation. We further optimized a scalable PDMS mold. Porcine muscle stem cells formed structurally-organized myotubes similar to muscle fibres in the mold. Asc-2P enhanced porcine muscle cells grown as 3D tissue networks that can produce a relatively large 3D tissue networks as cultured meat building blocks, which showed improved texture and amino acid content. These results established a realistic workflow for the production of cultured meat that mimics the pork meat structurally and is potentially scalable for industry.

7.
Talanta ; 242: 123274, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35144068

RESUMEN

Single-cell impedance analysis can provide valuable information for characterizing and discriminating cells. In this paper, a cost-effective portable microfluidic impedance cytometer (MIC) was proposed to realize the broadband impedance analysis of cells by using maximum length sequence (MLS) and viscoelastic focusing. The MIC comprised a microfluidic chip with a straight microchannel, two indium tin oxide (ITO) electrodes, and a home-made platform performing maximum length sequence technique. The viscoelastic focusing enabled cells to focus into a single train to eliminate the influence of cell position variation on acquired electrical signals and allow the cells to pass through the detection region one by one. The MLS technique realized the fast broadband impedance detection of single cells at a low hardware cost. The impedance data under multiplex frequencies was obtained to uncover the dielectric properties of white blood cells (WBCs) and MCF-7 cancer cells. The machine learning was used to train the impedance data and to identify cell types. The results indicated that 98.98% of MCF-7 cells and 98.65% of WBCs were correctly identified. Our MIC showed a potential to be developed as a cost-effective and portable device for point-of-care testing of circulating tumor cells from patients' peripheral blood.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Análisis Costo-Beneficio , Impedancia Eléctrica , Electrodos , Humanos , Leucocitos
8.
Biomicrofluidics ; 15(4): 041501, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34262632

RESUMEN

Inertial microfluidics has brought enormous changes in the conventional cell/particle detection process and now become the main trend of sample pretreatment with outstanding throughput, low cost, and simple control method. However, inertial microfluidics in a straight microchannel is not enough to provide high efficiency and satisfying performance for cell/particle separation. A contraction-expansion microchannel is a widely used and multifunctional channel pattern involving inertial microfluidics, secondary flow, and the vortex in the chamber. The strengthened inertial microfluidics can help us to focus particles with a shorter channel length and less processing time. Both the vortex in the chamber and the secondary flow in the main channel can trap the target particles or separate particles based on their sizes more precisely. The contraction-expansion microchannels are also capable of combining with a curved, spiral, or serpentine channel to further improve the separation performance. Some recent studies have focused on the viscoelastic fluid that utilizes both elastic forces and inertial forces to separate different size particles precisely with a relatively low flow rate for the vulnerable cells. This article comprehensively reviews various contraction-expansion microchannels with Newtonian and viscoelastic fluids for particle focusing, separation, and microfluid mixing and provides particle manipulation performance data analysis for the contraction-expansion microchannel design.

9.
J Adv Res ; 26: 53-68, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33133683

RESUMEN

BACKGROUND: In recent years, health monitoring systems (HMS) have aroused great interest due to their broad prospects in preventive medicine. As an important component of HMS, flexible force sensors (FFS) with high flexibility and stretch-ability can monitor vital health parameters and detect physical movements. AIM OF REVIEW: In this review, the novel materials, the advanced additive manufacturing technologies, the selective sensing mechanisms and typical applications in both wearable and implantable HMS are discussed. KEY SCIENTIFIC CONCEPTS AND IMPORTANT FINDINGS OF REVIEW: We recognized that the next generation of the FFS will have higher sensitivity, wider linear range as well as better durability, self-power supplied and multifunctional integrated. In conclusion, the FFS will provide powerful socioeconomic benefits and improve people's quality of life in the future.

10.
Lab Chip ; 20(19): 3485-3502, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32910129

RESUMEN

Inertial microfluidics has gained significant attention since first being proposed in 2007 owing to the advantages of simplicity, high throughput, precise manipulation, and freedom from an external field. Superior performance in particle focusing, filtering, concentrating, and separating has been demonstrated. As a passive technology, inertial microfluidics technology relies on the unconventional use of fluid inertia in an intermediate Reynolds number range to induce inertial migration and secondary flow, which depend directly on the channel structure, leading to particle migration to the lateral equilibrium position or trapping in a specific cavity. With the advances in micromachining technology, many channel structures have been designed and fabricated in the past decade to explore the fundamentals and applications of inertial microfluidics. However, the channel innovations for inertial microfluidics have not been discussed comprehensively. In this review, the inertial particle manipulations and underlying physics in conventional channels, including straight, spiral, sinusoidal, and expansion-contraction channels, are briefly described. Then, recent innovations in channel structure for inertial microfluidics, especially channel pattern modification and unconventional cross-sectional shape, are reviewed. Finally, the prospects for future channel innovations in inertial microfluidic chips are also discussed. The purpose of this review is to provide guidance for the continued study of innovative channel designs to improve further the accuracy and throughput of inertial microfluidics.

11.
Micromachines (Basel) ; 10(8)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426534

RESUMEN

Using the 3D printed mold-removal method to fabricate microchannel has become a promising alternative to the conventional soft lithography technique, due to the convenience in printing channel mold and the compatibility with PDMS material. Although having great potential, the use of single filament extruded by fused deposition modeling (FDM) as the sacrificial channel mold has not been elaborately studied. In this paper, we demonstrate the fabrication of microchannels with different structure and size by controllably extruding the sacrificial channel molds. The influences of the main processing parameters including working distance, extrusion amount and printing speed on the printed microchannels are systematically investigated. The results show that, the circular and low-aspect-ratio straight microchannels with different sizes can be fabricated by adjusting the extrusion amounts. The sinusoidal, 3D curved and cross-linked curved microchannels along straight path can be fabricated, either independently or in combination, by the combined control of the working distance, extrusion amount and printing speed. The complex microchannels with different structural features can also be printed along curved serpentine, rectangular serpentine, and spiral paths. This paper presents a simple and powerful method to fabricate the complex microchannels with different structure and size by just controlling the processing parameters for extruding channel molds.

12.
J Transl Med ; 17(1): 89, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885229

RESUMEN

BACKGROUND: Artificial meniscal implants can be used to replace a severely injured meniscus after meniscectomy and restore the normal functionality of a knee joint. The aim of this paper was to design porous meniscal implants and assess their biomechanical properties. METHODS: Finite element simulations were conducted on eight different cases including intact healthy knees, knee joints with solid meniscal implants, and knee joints with meniscal implants with two types of triply periodic minimal surfaces. Compression stresses, shear stresses, and characteristics of stress concentrated areas were evaluated using an axial compressive load of 1150 N and an anterior load of 350 N. RESULTS: Compared to the solid meniscal implant, the proposed porous meniscal implant produced lower levels of compression and shear stresses on the cartilage, which facilitated the cartilage to retain a semilunar characteristic similar to the natural meniscus. Moreover, both compression and shear stresses on the artificial cartilage were found to be sensitive to the pore properties of the meniscal implant. The meniscal implants with primitive surfaces (porosity: 41%) showed a better performance in disseminating stresses within the knee joint. CONCLUSION: The present commercial meniscal implant has the problem of equivalent biomechanical properties compared to natural menisci. The main advantage of the proposed porous structure is that it can be used to prevent excessive compression and shear stresses on the articular cartilages. This structure has advantages both in terms of mechanics and printability, which can be beneficial for future clinical applications.


Asunto(s)
Menisco/fisiopatología , Prótesis e Implantes , Adulto , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Imagenología Tridimensional , Articulación de la Rodilla/patología , Articulación de la Rodilla/fisiopatología , Masculino , Menisco/patología , Porosidad , Estrés Mecánico , Propiedades de Superficie
13.
Electrophoresis ; 40(6): 930-954, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30311661

RESUMEN

Microfluidic technologies for isolating cells of interest from a heterogeneous sample have attracted great attentions, due to the advantages of less sample consumption, simple operating procedure, and high separation accuracy. According to the working principles, the microfluidic cell sorting techniques can be categorized into biochemical (labeled) and physical (label-free) methods. However, the inherent drawbacks of each type of method may somehow influence the popularization of these cell sorting techniques. Using the multiple complementary isolation principles is a promising strategy to overcome this problem, therefore there appears to be a continuing trend to integrate two or more sorting methods together. In this review, we focus on the recent advances in microfluidic cell sorting techniques relied on both physical and biochemical principles, with emphasis on the mechanisms of cell separation. The biochemical cell sorting techniques enhanced by physical principles and the physical cell sorting techniques enhanced by biochemical principles, are first introduced. Then, we highlight on-chip magnetic-activated cell sorting, on-chip fluorescence-activated cell sorting, multi-step cell sorting and multi-principle cell sorting techniques, which are based on both physical and biochemical separation mechanisms. Finally, the challenges and future perspectives of the integrated microfluidics for cell sorting are discussed.


Asunto(s)
Citometría de Flujo , Técnicas Analíticas Microfluídicas , Células Cultivadas , Humanos , Células MCF-7
14.
Anal Chem ; 89(5): 3154-3161, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28264567

RESUMEN

In this paper, we present a novel impedance microcytometer integrated with inertial focusing and liquid electrode techniques for high-throughput cell counting and discrimination. The inertial prefocusing unit orders cells into a determinate train to reduce the possibility of cell adhesions and ensure that only one cell passes through detection region at a time, which improves the accuracy of downstream detection. The liquid electrodes are constructed by inserting Ag/AgCl wires into the electrode chambers filled with flowing highly conductive electrolyte solutions, which have a high detection sensitivity while requiring a simple fabrication process. The effects of main sample flow rate, feed flow rate in electrode chambers, and feed solution type on measured impedance signals are experimentally explored. On the basis of the optimized system, we establish a linear relationship between the amplitude of impedance peaks and the volume of size-calibrated particles and achieve a high detection throughput of ∼5000 cells/s. Finally, using the calibrated microcytometer, we further investigate the size distributions of human breast tumor cells (MCF-7 cells) and leukocytes (white blood cells (WBCs)) and set a threshold amplitude to successfully distinguish the MCF-7 cells spiked in WBCs. Our impedance microcytometer may provide a potential tool for label-free cell enumeration and identification.


Asunto(s)
Citometría de Flujo/métodos , Leucocitos/citología , Análisis Discriminante , Impedancia Eléctrica , Electrodos , Humanos , Leucocitos/metabolismo , Células MCF-7 , Microfluídica , Tamaño de la Partícula
15.
Lab Chip ; 15(17): 3473-80, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26198683

RESUMEN

In this work, we present a novel passive flow regulator fabricated by stacking five functional layers. To understand the flow-rate regulation characteristics, a series of prototype devices with different structural dimensions are investigated. The experimental results show that our regulator can exhibit a constant delivery flow rate of up to 4.38 ± 0.1 ml min(-1) with variations less than 5%, and the minimum threshold pressure for achieving a constant flow rate is only 10 kPa. As compared with previously reported regulators, our regulator offers a much wider flow-rate regulation range under lower threshold pressures. To validate the practical function of our regulator, a low pressure gas-driven flow system integrated with two passive flow regulators and a Dean flow fractionation chip is constructed to achieve high-throughput inertial isolation of differently sized microbeads. The isolation performance is found to be totally independent of the inlet pressure, which permits the use of portable and low-cost flow-driving apparatus for accurate flow control. Therefore, the passive flow regulator proposed in our work is potentially useful for the steady injection and accurate control of the sample fluid in low cost, miniaturized microfluidic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...