Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cardiovasc Res ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163570

RESUMEN

AIMS: The development of cell therapy as a widely-available clinical option for ischemic cardiomyopathy is hindered by the invasive nature of current cell delivery methods. Furthermore, the rapid disappearance of cells after transplantation provides a cogent rationale for using repeated cell doses, which, however, has not been done thus far in clinical trials because it is not feasible with invasive approaches. The goal of this translational study was to test the therapeutic utility of the intravenous route for cell delivery. METHODS AND RESULTS: Pigs with chronic ischemic cardiomyopathy induced by myocardial infarction received one or three intravenous doses of allogeneic bone marrow mesenchymal stromal cells (MSCs) or placebo 35 days apart. Rigor guidelines, including blinding and randomization, were strictly followed. A comprehensive assessment of LV function was conducted with three independent methods (echocardiography, magnetic resonance imaging, and hemodynamic studies). The results demonstrate that three doses of MSCs improved both load-dependent and independent indices of left ventricular (LV) function and reduced myocardial hypertrophy and fibrosis; in contrast, one dose failed to produce most of these benefits. CONCLUSIONS: To our knowledge, this is the first study to show that intravenous infusion of a cell product improves LV function and structure in a large animal model of chronic ischemic cardiomyopathy and that repeated infusions are necessary to produce robust effects. This study, conducted in a clinically-relevant model, supports a new therapeutic strategy based on repeated intravenous infusions of allogeneic MSCs and provides a foundation for a first-in-human trial testing this strategy in patients with chronic ischemic cardiomyopathy.

2.
Front Oncol ; 14: 1397246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800393

RESUMEN

Background: Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods: Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results: A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion: ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.

3.
Cardiovasc Res ; 120(2): 152-163, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38175760

RESUMEN

AIMS: Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS: Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION: This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Ratas , Animales , Porcinos , Miocitos Cardíacos , Enfermedad Crónica , Terapia Genética , Ciclo Celular
5.
Stem Cell Rev Rep ; 19(7): 2429-2446, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500831

RESUMEN

BACKGROUND: Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES: This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS: Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS: In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS: Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Isquemia Miocárdica , Gelatina de Wharton , Adulto , Ratas , Humanos , Animales , Médula Ósea , Isquemia Miocárdica/terapia , Infarto del Miocardio/metabolismo
6.
Mol Cell Biochem ; 478(6): 1245-1250, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36282351

RESUMEN

The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratas , Aldosterona/metabolismo , Ciclo Celular , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo , Riñón/metabolismo , Infarto del Miocardio/metabolismo , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina
8.
Commun Biol ; 5(1): 934, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085302

RESUMEN

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Asunto(s)
Biomimética , Corazón , Cardiomegalia , Medios de Cultivo , Humanos , Sístole
9.
Curr Opin Cardiol ; 37(3): 193-200, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35612934

RESUMEN

PURPOSE OF REVIEW: Clinical trials of adult cell therapy for chronic heart failure are often misrepresented in an unfairly negative light. Results are claimed to be 'negative', 'incremental', or 'modest'. This common misconception is detrimental to medical progress and needs to be dispelled. RECENT FINDINGS: Contrary to the false narrative of scientific and lay media, the outcome of recent trials of cell therapy for heart failure has been encouraging and even exciting. Specifically, with the exception of ALLSTAR, in the past 2 years several Phase II-III double-blind, randomized trials have yielded impressive results, demonstrating not just safety but also salubrious effects on cardiac function (MSC-HF) or clinical events (MSC-HF, CONCERT-HF, and DREAM-HF) for at least 1 year after a single administration of cells. Such outcomes were neither incremental nor minor, nor achievable with one dose of any other nondevice therapy for heart failure. SUMMARY: The oft-repeated assertion that cell therapy does not benefit patients with chronic heart failure is based on a misrepresentation of the literature and is contrary to the available scientific evidence. Although the mechanism of action of cell therapy is unclear, research on its use in heart failure should continue, as only rigorous, well designed, Phase III trials can definitely confirm or refute its efficacy.


Asunto(s)
Insuficiencia Cardíaca , Adulto , Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedad Crónica , Método Doble Ciego , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
11.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35061545

RESUMEN

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Ciclo Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
12.
Mol Cell Biochem ; 477(2): 431-444, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783963

RESUMEN

Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Administración Intravenosa , Aloinjertos , Animales , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas F344
13.
Cardiovasc Drugs Ther ; 35(1): 113-123, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33079319

RESUMEN

PURPOSE: Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS: Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS: The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115).  CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.


Asunto(s)
Lípidos de la Membrana/administración & dosificación , Lípidos de la Membrana/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Nanopartículas/química , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos , Células Endoteliales/citología , Femenino , Liposomas/química , Ratones , Transducción de Señal , Porcinos
14.
Can J Physiol Pharmacol ; 99(2): 129-139, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32937086

RESUMEN

The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.


Asunto(s)
Cardiopatías/metabolismo , Miocardio/patología , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas c-kit
15.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877659

RESUMEN

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Cardiotoxinas/efectos adversos , Corazón/efectos de los fármacos , Modelos Biológicos , Técnicas de Cultivo de Tejidos , Adulto , Anciano , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Doxorrubicina/efectos adversos , Femenino , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Porcinos , Trastuzumab/efectos adversos
16.
J Vis Exp ; (157)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32250357

RESUMEN

Many novel drugs fail in clinical studies due to cardiotoxic side effects as the currently available in vitro assays and in vivo animal models poorly predict human cardiac liabilities, posing a multi-billion-dollar burden on the pharmaceutical industry. Hence, there is a worldwide unmet medical need for better approaches to identify drug cardiotoxicity before undertaking costly and time consuming 'first in man' trials. Currently, only immature cardiac cells (human induced pluripotent stem cell-derived cardiomyocytes [hiPSC-CMs]) are used to test therapeutic efficiency and drug toxicity as they are the only human cardiac cells that can be cultured for prolonged periods required to test drug efficacy and toxicity. However, a single cell type cannot replicate the phenotype of the complex 3D heart tissue which is formed of multiple cell types. Importantly, the effect of drugs needs to be tested on adult cardiomyocytes, which have different characteristics and toxicity responses compared to immature hiPSC-CMs. Culturing human heart slices is a promising model of intact human myocardium. This technology provides access to a complete multicellular system that mimics the human heart tissue and reflects the physiological or pathological conditions of the human myocardium. Recently, through optimization of the culture media components and the culture conditions to include continuous electrical stimulation at 1.2 Hz and intermittent oxygenation of the culture medium, we developed a new culture system setup that preserves viability and functionality of human and pig heart slices for 6 days in culture. In the current protocol, we are detailing the method for slicing and culturing pig heart as an example. The same protocol is used to culture slices from human, dog, sheep, or cat hearts. This culture system has the potential to become a powerful predictive human in situ model for acute cardiotoxicity testing that closes the gap between preclinical and clinical testing results.


Asunto(s)
Cardiotoxicidad , Corazón/efectos de los fármacos , Técnicas de Cultivo de Órganos , Animales , Células Cultivadas , Humanos , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ovinos , Porcinos
17.
Theranostics ; 10(4): 1514-1530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042319

RESUMEN

Intrinsic cardiogenic factor expression, a proxy for cardiomyogenic lineage commitment, may be an important determinant of donor cell cardiac reparative capacity in cell therapy applications; however, whether and how this contributes to their salutary effects remain largely ambiguous. Methods: The current study examined the consequences of enhanced cardiogenic factor expression, via lentiviral delivery of GMT (GATA4, MEF2C, and TBX5), on cardiac mesenchymal cell (CMC) anti-fibrogenic paracrine signaling dynamics, in vitro, and cardiac reparative capacity, in vivo. Proteome cytokine array analyses and in vitro cardiac fibroblast activation assays were performed using conditioned medium derived from either GMT- or GFP control-transduced CMCs, to respectively assess cardiotrophic factor secretion and anti-fibrogenic paracrine signaling aptitude. Results: Relative to GFP controls, GMT CMCs exhibited enhanced secretion of cytokines implicated to function in pathways associated with matrix remodeling and collagen catabolism, and more ably impeded activated cardiac fibroblast Col1A1 synthesis in vitro. Following their delivery in a rat model of chronic ischemic cardiomyopathy, conventional echocardiography was unable to detect a therapeutic advantage with either CMC population; however, hemodynamic analyses identified a modest, yet calculable supplemental benefit in surrogate measures of global left ventricular contractility with GMT CMCs relative to GFP controls. This phenomenon was neither associated with a decrease in infarct size nor an increase in viable myocardium, but with only a marginal decrease in regional myocardial collagen deposition. Conclusion: Overall, these results suggest that CMC cardiomyogenic lineage commitment biases cardiac repair and, further, that enhanced anti-fibrogenic paracrine signaling potency may underlie, in part, their improved therapeutic utility.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Factores Reguladores Miogénicos/genética , Comunicación Paracrina/fisiología , Animales , Cardiomiopatías/terapia , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/genética
18.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310161

RESUMEN

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Asunto(s)
Biomimética/métodos , Ventrículos Cardíacos/ultraestructura , Función Ventricular/fisiología , Adulto , Animales , Femenino , Corazón/fisiología , Ventrículos Cardíacos/citología , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Miocardio/citología , Miocardio/ultraestructura , Técnicas de Cultivo de Órganos/métodos , Porcinos , Transcriptoma/fisiología
20.
Basic Res Cardiol ; 114(1): 3, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446837

RESUMEN

Preclinical investigations support the concept that donor cells more oriented towards a cardiovascular phenotype favor repair. In light of this philosophy, we previously identified HDAC1 as a mediator of cardiac mesenchymal cell (CMC) cardiomyogenic lineage commitment and paracrine signaling potency in vitro-suggesting HDAC1 as a potential therapeutically exploitable target to enhance CMC cardiac reparative capacity. In the current study, we examined the effects of pharmacologic HDAC1 inhibition, using the benzamide class 1 isoform-selective HDAC inhibitor entinostat (MS-275), on CMC cardiomyogenic lineage commitment and CMC-mediated myocardial repair in vivo. Human CMCs pre-treated with entinostat or DMSO diluent control were delivered intramyocardially in an athymic nude rat model of chronic ischemic cardiomyopathy 30 days after a reperfused myocardial infarction. Indices of cardiac function were assessed by echocardiography and left ventricular (LV) Millar conductance catheterization 35 days after treatment. Compared with naïve CMCs, entinostat-treated CMCs exhibited heightened capacity for myocyte-like differentiation in vitro and superior ability to attenuate LV remodeling and systolic dysfunction in vivo. The improvement in CMC therapeutic efficacy observed with entinostat pre-treatment was not associated with enhanced donor cell engraftment, cardiomyogenesis, or vasculogenesis, but instead with more efficient inhibition of myocardial fibrosis and greater increase in myocyte size. These results suggest that HDAC inhibition enhances the reparative capacity of CMCs, likely via a paracrine mechanism that improves ventricular compliance and contraction and augments myocyte growth and function.


Asunto(s)
Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Daño por Reperfusión Miocárdica/patología , Animales , Benzamidas/farmacología , Fibrosis , Xenoinjertos , Humanos , Células Madre Mesenquimatosas/metabolismo , Piridinas/farmacología , Ratas , Ratas Desnudas , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA