Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(33): 8555-8561, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39137320

RESUMEN

Halide perovskites (HPs) based memristors show great potential in the simulation of biological neurons. Herein, a memristor with Ag/PMMA&CsPbCl3/ITO structure is developed by incorporating CsPbCl3 nanocrystals (NCs) into poly(methyl methacrylate) (PMMA) as the functional layer. The device exhibits typical bipolar resistive behavior, low operating voltage, good endurance of more than 400 cycles, consistent and excellent ON/OFF ratio (≈ 103), and high mechanical bending stability (bending times = 1000). The RS mechanism has been well explained by the electric field induced formation and rupture of Ag filaments in the PMMA&CsPbCl3 layer. More importantly, the memristor successfully displays fundamental nociceptive functions including threshold, nonadaptation, relaxation, and sensitization (allodynia and hyperalgesia). To demonstrate the feasibility of the artificial nociceptor, a pressure nociceptor system is constructed using the Ag/PMMA&CsPbCl3/ITO device. These results provide new perspectives for the development of next-generation, high-performance HPs based neural morphology devices.

2.
Inorg Chem ; 63(35): 16167-16176, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39159335

RESUMEN

Mixed-halide CsPb(Br/Cl)3 perovskite quantum dots (PeQDs) have attracted extensive attention in light-emitting diodes (LEDs), but their low photoluminescent efficiency and especially poor stability impede their practical applications. Here, we employ bifunctional didodecyldimethylammonium thiocyanide (DDASCN) with a pseudohalogen SCN- and branched DDA+ to obtain blue-emitting CsPbBr2Cl PeQDs. DDASCN significantly boosts the photoluminescence quantum yield to 92% by inhibiting nonradiative recombination. Importantly, DDASCN PeQDs show excellent stabilities against air, UV light, heat, and polar solvents. These improved performances were explained by density functional theory calculation, which shows that SCN- fills the Cl- vacancy by simultaneously binding with undercoordinated Pb2+ and Cs+, while DDA+ connects undercoordinated Br- and lies parallel to the PeQD core, leading to efficient passivation and a strong binding capacity. Finally, we achieved high-performance white LEDs by integrating our PeQDs, resulting in a color-rendering index of 92.9, a color gamut of 119.61%, and chromaticity coordinates of (0.33, 0.33). This provides an effective method to obtain efficient and stable CsPb(Br/Cl)3 PeQDs for practical applications.

3.
Chem Commun (Camb) ; 60(67): 8900-8903, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091141

RESUMEN

CsPbBr3 quantum dots were grown on ReS2 nanosheets to form CsPbBr3@ReS2 heterojunctions using an anti-solvent method. The composition, morphology, spatial distribution, and optical absorption of samples were characterized. CsPbBr3@ReS2-15 exhibits not only a higher photocatalytic performance than CsPbBr3 due to the improved optical absorption and Z-scheme charge migration, but also a higher CO2 conversion ratio (35.60%) and energy efficiency (13.10%) in the dielectric barrier discharge (DBD) plasma due to superior photocatalytic activity, increased micro-discharge time, and improved discharge uniformity. This work provides a strategy for plasma photocatalytic CO2 conversion.

4.
J Phys Chem Lett ; 15(9): 2616-2623, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38420941

RESUMEN

Zero-dimensional (0D) lead-free halide perovskites have lately received significant interest owing to their captivating broadband emissions. An in-depth understanding of the luminescence mechanism of self-trapped excitons (STEs) and realization of effective regulation of luminescence properties have become a major challenge in the research of lead-free metal halides. Herein, we have synthesized the Cs2ZnCl4 and Sb3+-doped Cs2ZnCl4 crystals and conducted a comprehensive investigation into their distinct electronic structures and optical characteristics. The findings from both experimental and theoretical investigations indicate that the tricolor luminescence in Cs2ZnCl4 and blue emission in Sb3+-doped Cs2ZnCl4 stem from intrinsic STEs, and the near-infrared emission originates from extrinsic STEs associated with the Sb3+ ion in Sb3+-doped Cs2ZnCl4. Sb3+ doping increases the quantum yield of Cs2ZnCl4 to a large extent. In addition, intersystem crossing, exciton self-trapping, and lattice relaxation are the main reasons for the large Stokes shift. The present study is expected to provide a novel perspective for researchers in comprehending the luminescent mechanism of STEs and advancing the utilization of 0D lead-free metal halides in optoelectronic applications.

5.
J Phys Chem Lett ; 15(6): 1572-1578, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301605

RESUMEN

Herein, the electrical characteristics, photoelectric properties, resistive switching (RS) mechanism, and flexible storage application of Ag/PMMA&Mn:CsPbCl3/ITO (PMMA = poly(methyl methacrylate)) devices are studied by using the photoelectric material Mn:CsPbCl3 nanocrystals (NCs) embedded in PMMA as the RS layer. The devices exhibit bipolar RS behavior with low operating voltage, excellent cycling endurance (>1000 times), long retention time (≥104 s), high ON/OFF ratio (≈104), and good environmental stability. The flexible memory devices have demonstrated reliable mechanical stability of consecutive 1000 bending cycles. In addition, multilevel data storage is realized by introducing the UV light, and the adjustive resistive switching characteristics is achieved through photoelectric synergistic work. The resistive switching mechanism under the excitation of light has been studied comprehensively. This work may pave a new way for developing the next generation of high-density data storage and photoelectric memristor.

6.
Small ; 20(3): e2305664, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691085

RESUMEN

Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein,  we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip,  we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.

7.
Adv Sci (Weinh) ; 11(6): e2307543, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070176

RESUMEN

In order to deal with the global energy crisis and environmental problems, reducing carbon dioxide through artificial photosynthesis has become a hot topic. Lead halide perovskite is attracted people's attention because of its excellent photoelectric properties, but the toxicity and long-term instability prompt people to search for new photocatalysts. Herein, a series of <111> inorganic double perovskites Cs4 Mn1-x Cux Sb2 Cl12 microcrystals (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) are synthesized and characterized. Among them, Cs4 Mn0.7 Cu0.3 Sb2 Cl12 microcrystals have the best photocatalytic performance, and the yields of CO and CH4 are 503.86 and 68.35 µmol g-1 , respectively, after 3 h irradiation, which are the highest among pure phase perovskites reported so far. In addition, in situ Fourier transform infrared (FT-IR) spectroscopy and electron spin resonance (ESR) spectroscopy are used to explore the mechanism of the photocatalytic reaction. The results highlight the potential of this class of materials for photocatalytic reduction reactions.

8.
Inorg Chem ; 62(46): 19006-19014, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930938

RESUMEN

The application of X-ray imaging in military, industrial flaw detection, and medical examination is inseparable from the wide application of scintillator materials. In order to substitute for lead, lower costs, and reduce self-absorption, organic-inorganic hybrid lead-free perovskite scintillators are emerging as a new option. In this work, novel (TEA)2Zr1-xTexCl6 perovskite microcrystals (MCs) were successfully synthesized by a hydrothermal method, with Te4+ doping, which leads to yellow triplet-state self-trapped excitons emission. The emission peak of (TEA)2Zr1-xTexCl6 located at 605 nm under X-ray excitation, which was applied to X-ray imaging, shows a clear wiring structure inside the USB connector. The detection limit (DL) of 820 nGyair/s for (TEA)2Zr0.9Te0.1Cl6 is well below the dose rate corresponding to a standard medical X-ray diagnosis is 5.5 µGyair/s. This work opens up a new path for organic-inorganic hybrid lead-free scintillators.

9.
J Phys Chem Lett ; 14(40): 8922-8929, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768142

RESUMEN

Although dielectric barrier discharge (DBD) plasma is a promising technique for CO2 conversion, realizing CO2-to-alcohol is still challenging via the use of H2O. Herein, for the first time, efficient CO2 conversion was achieved via the synergism between the Cs2SnCl6 photocatalyst and DBD plasma assisted by H2O. The CO2 conversion ratio of plasma photocatalysis was 6.5% higher than that of only the plasma and photocatalysis, implying that the synergism of plasma catalysis and photocatalysis was achieved. Furthermore, the DBD plasma assisted by the Cs2SnCl6 photocatalyst could convert CO2 and H2O to CO and a small amount of methanol and ethanol. The CO2 conversion ratio was enhanced by 50.6% in the presence of H2O, which was attributed to the improvement of charge transfer due to the increased electrical conductivity of the photocatalyst surface during plasma discharge. This work provides a new idea for developing an efficient system for CO2 utilization.

10.
J Hazard Mater ; 458: 131983, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406528

RESUMEN

In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA