Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Sensors (Basel) ; 23(15)2023 Aug 06.
Article En | MEDLINE | ID: mdl-37571767

Due to their ability to achieve higher DOA estimation accuracy and larger degrees of freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation. However, the usage of the sparse array is based on the assumption that the signals are independent of each other, which is hard to guarantee in practice due to the complex propagation environment. To address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the wideband signals on the reference frequency and assist in the decorrelation process, which can be implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to make full use of the information available in the data covariance matrix, as well as to improve the decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE) that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real data tests.

2.
Int Immunopharmacol ; 122: 110597, 2023 Sep.
Article En | MEDLINE | ID: mdl-37413931

OBJECTIVE: Aberrant-activated T cells, especially CD4+T cells, play a crucial part in the pathogenetic progress of immune thrombocytopenia (ITP). PD-1-mediated signals play a negative part in the activation of CD4+T cells. However, knowledge is limited on the pathogenic characteristics and function of CD4+PD-1+T cells in ITP. MATERIALS AND METHODS: The frequency and phenotype including cell activation, apoptosis, and cytokine production of CD4+PD-1+T cells were evaluated by flow cytometry. PD-1 Ligation Assay was performed to assess the function of PD-1 pathway in CD4+T cells. Mitochondrial reactive oxygen species (mtROS) were detected by MitoSOX Red probe. RESULTS: Compared with healthy controls (HC), the frequencies of CD4+PD-1+T cells were significantly increased in ITP patients. However, these cells are not exhausted despite PD-1 expression. Besides retaining cytokine-producing potential, these CD4+PD-1+T cells also had a possible B-cell helper function including expressing ICOS, CD84, and CD40L. Moreover, the CD4+PD-1+T cell subset contained higher levels of mitochondrial ROS than CD4+PD-1-T cell subset in patients with ITP. And mtROS inhibition could reduce the secretion of the inflammatory cytokines and regulate the function of CD4+PD-1+T cells. Upon in-vitro T cell receptor (TCR) stimulation of CD4+T cells in the presence of plate-bound PD-L1 fusion protein (PD-L1-Ig), CD4+T cells from ITP patients appeared resistant to such PD-1-mediated inhibition of interferon (IFN)-γ secretion. CONCLUSIONS: The CD4+PD-1+T cells were more abundant in patients with ITP. Additionally, this CD4+PD-1+T cell subset may be a potential etiology of ITP and a potential immune therapeutic target for ITP patients in the future.


Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , CD4-Positive T-Lymphocytes , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Reactive Oxygen Species , Cytokines , Signaling Lymphocytic Activation Molecule Family
3.
Sensors (Basel) ; 23(14)2023 Jul 13.
Article En | MEDLINE | ID: mdl-37514657

In an ultra-wideband (UWB) system, the two-dimensional (2D) multiple signal classification (MUSIC) algorithms based on high-precision 2D spectral peak search can jointly estimate the time of arrival (TOA) and angle of arrival (AOA). However, the computational complexity of 2D-MUSIC is very high, and the corresponding data model is only based on the dual antennas. To solve these problems, a low-complexity algorithm for joint AOA and TOA estimation of the multipath ultra-wideband signal is proposed. Firstly, the dual antenna sensing data model is extended to the antenna array case. Then, based on the array-sensing data model, the proposed algorithm transforms the 2D spectral peak search of 2D-MUSIC into a secondary optimization problem to extract the estimation of AOA via only 1D search. Finally, the acquired AOA estimations are brought back, and the TOA estimations are also obtained through a 1D search. Moreover, in the case of an unknown transmitted signal waveform, the proposed method can still distinguish the main path signal based on the time difference of arrival of different paths, which shows wider applications. The simulation results show that the proposed algorithm outperforms the Root-MUSIC algorithm and the estimation of signal parameters using the rotational invariance techniques (ESPRIT) algorithm, and keeps the same estimation accuracy but with greatly reduced computational complexity compared to the 2D-MUSIC algorithm.

4.
Int Immunopharmacol ; 121: 110532, 2023 Aug.
Article En | MEDLINE | ID: mdl-37354782

Our previous study found that increased serum IL-27 could promote rheumatoid arthritis (RA) B cell dysfunction via activating mTOR signaling pathway. This study aimed to explore the effects of IL-27 on B cell metabolism and clarify the mechanisms via which IL-27 enhancing glycolysis to induce B cells hyperactivation. Peripheral CD19+ B cells were purified from healthy controls (HC) and RA patients and then cultured with or without anti-CD40/CpG and glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or mTOR inhibitor rapamycin. Furthermore, the isolated CD19+ B cells were treated by HC serum or RA serum in the presence and absence of recombinant human IL-27 or anti-IL-27 neutralizing antibodies or 2-DG or rapamycin. The B cell glycolysis level, proliferation, differentiation and inflammatory actions were detected by qPCR, flow cytometry or ELISA. We found that the glycolysis in RA B cells was increased significantly compared with HC B cells. Glycolysis inhibition downregulated the proliferation, differentiation, and inflammatory actions of RA B cells. RA serum and IL-27 promoted B cell glycolysis, which could be obviously rescued by anti-IL-27 antibodies or mTOR inhibitor rapamycin. Our results suggest that the enhanced cellular glycolysis of RA B cells induced by IL-27 may contribute to B cells hyperactivation through activating the mTOR signaling pathway.


Arthritis, Rheumatoid , Interleukin-27 , Humans , Antigens, CD19/metabolism , Glycolysis , Interleukin-27/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
5.
Front Plant Sci ; 14: 1189642, 2023.
Article En | MEDLINE | ID: mdl-37235004

Barley landraces accumulated variation in adapting to extreme highland environments during long-term domestication in Tibet, but little is known about their population structure and genomic selection traces. In this study, tGBS (tunable genotyping by sequencing) sequencing, molecular marker and phenotypic analyses were conducted on 1,308 highland and 58 inland barley landraces in China. The accessions were divided into six sub-populations and clearly distinguished most six-rowed, naked barley accessions (Qingke in Tibet) from inland barley. Genome-wide differentiation was observed in all five sub-populations of Qingke and inland barley accessions. High genetic differentiation in the pericentric regions of chromosomes 2H and 3H contributed to formation of five types of Qingke. Ten haplotypes of the pericentric regions of 2H, 3H, 6H and 7H were further identified as associated with ecological diversification of these sub-populations. There was genetic exchange between eastern and western Qingke but they shared the same progenitor. The identification of 20 inland barley types indicated multiple origins of Qingke in Tibet. The distribution of the five types of Qingke corresponded to specific environments. Two predominant highland-adaptative variations were identified for low temperature tolerance and grain color. Our results provide new insights into the origin, genome differentiation, population structure and highland adaptation in highland barley which will benefit both germplasm enhancement and breeding of naked barley.

6.
Int Immunopharmacol ; 117: 109922, 2023 Apr.
Article En | MEDLINE | ID: mdl-37012888

OBJECTIVE: To investigate the predictive value of peripheral lymphocyte subsets for sepsis progression. METHODS: Patients with sepsis were divided into the improved group (n = 46) and severe group (n = 39) according to disease progression. Flow cytometric analysis was performed to enumerate absolute counts of peripheral lymphocyte subsets. Logistic regression analyses were conducted to identify clinical factors linked to sepsis progression. RESULTS: The absolute counts of peripheral lymphocyte subsets were markedly decreased in septic patients compared with healthy controls. After treatment, the absolute counts of lymphocytes, CD3+ T cells, and CD8+ T cells were restored in the improved group, and reduced in the severe group. Logistic regression analysis indicated that a low CD8+ T cells count was a risk factor for sepsis progression. Receiver operating characteristic curve analysis revealed that CD8+ T cells count had the greatest ability to predict sepsis progression. CONCLUSIONS: The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were significantly higher in the improved group than the severe group. CD8+ T cells count was predictive of sepsis progression. Lymphopenia and CD8+ T cells depletion were associated with the clinical outcomes of sepsis, suggesting that CD8+ T cells have potential as a predictive biomarker and therapeutic target for patients with sepsis.


CD8-Positive T-Lymphocytes , Sepsis , Humans , Lymphocyte Subsets , Lymphocyte Count , Disease Progression , Sepsis/diagnosis , T-Lymphocyte Subsets
7.
ACS Appl Mater Interfaces ; 14(38): 44002-44014, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36106728

The development of anodes with highly efficient electrochemical catalysis and good durability is crucial for solid oxide fuel cells (SOFCs). This paper reports a superior Ru-doped La0.4Sr0.4Ti0.85Ni0.15O3-δ (L0.4STN) anode material with excellent catalytic activity and good stability. The doping of Ru can inhibit the agglomeration of in situ-exsolved Ni nanoparticles on the surface and induce the formation of abundant multiple-twinned defects in the perovskite matrix, which significantly increase the concentration of oxygen vacancies. The reduced L0.4STRN (R-L0.4STRN) anode shows an area-specific resistance (ASR) of 0.067 Ω cm2 at 800 °C, which is only about one-third of that of stochiometric R-L0.6STN (0.212 Ω cm2). A single cell with the R-L0.4STRN anode shows excellent stability (∼50 h at 650 °C) in both H2 and CH4. Furthermore, R-L0.4STRN exhibits outstanding resistance to carbon deposition, which can be attributed to the synergistic effect of highly dispersed Ni nanoparticles and active twinned defects induced by Ru doping.

8.
Front Immunol ; 13: 757616, 2022.
Article En | MEDLINE | ID: mdl-35720293

Iguratimod (IGU) is a novel disease modified anti-rheumatic drug, which has been found to act directly on B cells for inhibiting the production of antibodies in rheumatoid arthritis (RA) patients. Follicular helper T (Tfh) cells, a key T cell subsets in supporting B cell differentiation and antibody production, have been shown to play critical roles in RA. However, whether IGU can inhibit RA Tfh cells which further restrains B cell function remains unclear. Here, we aimed to explore the roles of IGU in regulating RA circulating Tfh (cTfh) cell function and investigate the potential mechanism associated with cell glucose metabolism. In our study, we found that IGU could act on RA-CD4+ T cells to reduce T cell-dependent antibody production. IGU decreased the percentage of RA cTfh cells and the expression of Tfh cell-related molecules and cytokines which were involved in B cell functions. Importantly, our data showed that IGU significantly restrained the cTfh cell function by inhibiting glucose metabolism, which relied on Hif1α-HK2 axis. In summary, we clarified a new target and mechanism of IGU by restraining RA cTfh cell function via inhibiting Hif1α-HK2-glucose metabolism axis. Our study demonstrates the potential application of IGU in the treatment of diseases related to abnormal metabolism and function of Tfh cells.


Arthritis, Rheumatoid , T Follicular Helper Cells , Chromones , Glucose/metabolism , Humans , Sulfonamides , T-Lymphocytes, Helper-Inducer
9.
J Biol Chem ; 298(8): 102188, 2022 08.
Article En | MEDLINE | ID: mdl-35753350

The UV-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 photoproducts), can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. The fully reduced flavin (hydroquinone, HQ) cofactor is required for the catalysis of both types of these photolyases. On the other hand, flavin cofactor in the semireduced state, semiquinone, can be utilized by photolyase homologs, the cryptochromes. However, the evolutionary process of the transition of the functional states of flavin cofactors in photolyases and cryptochromes remains mysterious. In this work, we investigated three representative photolyases (Escherichia coli CPD photolyase, Microcystis aeruginosa DASH, and Phaeodactylum tricornutum 6-4 photolyase). We show that the residue at a single site adjacent to the flavin cofactor (corresponding to Ala377 in E. coli CPD photolyase, hereafter referred to as site 377) can fine-tune the stability of the HQ cofactor. We found that, in the presence of a polar residue (such as Ser or Asn) at site 377, HQ was stabilized against oxidation. Furthermore, this polar residue enhanced the photorepair activity of these photolyases both in vitro and in vivo. In contrast, substitution of hydrophobic residues, such as Ile, at site 377 in these photolyases adversely affected the stability of HQ. We speculate that these differential residue preferences at site 377 in photolyase proteins might reflect an important evolutionary event that altered the stability of HQ on the timeline from expression of photolyases to that of cryptochromes.


Deoxyribodipyrimidine Photo-Lyase , Amino Acids/metabolism , Cryptochromes/genetics , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavins/metabolism , Pyrimidine Dimers/metabolism
10.
J Phys Chem Lett ; 13(19): 4227-4234, 2022 May 19.
Article En | MEDLINE | ID: mdl-35521922

The sluggish oxygen reduction reaction (ORR) is a central issue for energy conversion technologies, particularly in the cathodes of solid oxide fuel cells. The recognition of atomic-level kinetics of the ORR is the key solution. Herein, we take BaCo0.75Fe0.25O3 (BCF) perovskite cathode as a model to investigate the ambiguous ORR mechanism by density function theory and ab initio molecular dynamics. The oxygen dissociation process was found as the rate-determining step, and the performance of BCF series perovskite could be well-characterized by the dissociation barrier energy. Further electronic structure analysis demonstrated that the Pr (Nd)-Odis bond accepted electrons during the oxygen dissociation process, resulting in reduction of the barrier energy. Finally, strong correlations between rare earth 4f electrons and B-site transition metal 3d electrons were found to be another underlying descriptor to determine the electrochemical activity. We expected that the method could be universally applied to design or screen other high-performance perovskite cathodes.

11.
Immunol Lett ; 239: 88-95, 2021 11.
Article En | MEDLINE | ID: mdl-34480980

Leptin is over-secreted in many autoimmune diseases, which can promote dendritic cells (DCs) maturation and up-regulate the expression of inflammatory cytokines, but the underlying mechanisms are not fully elucidated. Considering the major role of leptin in maintaining energy balance and the significant role of glycolysis in DCs activation, our study aims to investigate whether leptin promotes the activation of DCs via glycolysis and its underlying mechanisms. We demonstrated that leptin promoted the activation of DCs, including up-regulating the expression of co-stimulatory molecules and inflammatory cytokines, enhancing the proliferation and T helper 17 (Th17) cell ratio in peripheral blood mononuclear cells (PBMC) co-cultured with leptin-stimulated DCs. Leptin also enhanced DCs glycolysis with increased glucose consumption, lactate production, and the expression of hexokinase 2 (HK2). In addition, the activation of DCs stimulated by leptin could be inhibited by the glycolysis inhibitor 2-deoxy-d-glucose (2-DG). To explore the signaling pathways involved in leptin-induced HK2 expression, we observed that the inhibitors of STAT3 (NSC74859) could repress the enhancement of HK2 triggered by leptin stimulation. Therefore, our results indicated that leptin promoted glycolytic metabolism to induce DCs activation via STAT3-HK2 pathway.


Dendritic Cells/immunology , Glycolysis/immunology , Leptin/metabolism , Aminosalicylic Acids/pharmacology , Benzenesulfonates/pharmacology , Cell Communication/immunology , Cell Line , Cell Proliferation/drug effects , Coculture Techniques , Dendritic Cells/metabolism , Healthy Volunteers , Hexokinase/metabolism , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Primary Cell Culture , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Up-Regulation/immunology
12.
Clin Exp Immunol ; 206(3): 354-365, 2021 12.
Article En | MEDLINE | ID: mdl-34558072

B cell dysfunction and inflammatory cytokine over-production participate in the pathogenesis of rheumatoid arthritis (RA). Here we compared peripheral B cell homeostasis and immune functions between RA patients and healthy controls (HC) and explored vital signaling pathways involved in altered RA B cells. We found that RA patients showed significantly decreased frequencies of peripheral CD19+ CD27+ CD24high regulatory B (Breg) cells but increased frequencies of CD19+ CD27+ CD38high plasmablasts and CD19+ CD138+ plasma cells, and higher levels of serum immunoglobulin (Ig)M and IgG. Compared to HC peripheral B cells, RA peripheral B cells had more increased proliferation and higher expression of activation markers. Importantly, our results showed that RA peripheral B cells displayed the mTOR signaling pathway to be more activated, and inhibition of mTOR could restore RA B cell homeostasis and functions. RA serum-treated B cells exhibited more increased expressions of mTOR, which could be restored with the addition of anti-interleukin (IL)-27 neutralizing antibody. Serum IL-27 levels were significantly increased in RA patients and positively correlated with disease activity, the frequencies of plasma cells and the levels of autoantibodies. In vitro, IL-27 notably promoted immune dysfunction of RA B cells, which were inhibited by anti-IL-27 neutralizing antibody. Also, the mTOR pathway was more activated in IL-27-treated RA B cells, and mTOR inhibition apparently reversed abnormalities of RA B cells mediated by IL-27. These results suggest that increased serum IL-27 levels could promote peripheral B cell dysfunction in RA patients via activating the mTOR signaling pathway. Thus, IL-27 may play a pro-pathogenic role in the development of RA, and antagonizing IL-27 could be a novel therapy strategy for RA.


Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , B-Lymphocytes, Regulatory/immunology , Interleukins/metabolism , TOR Serine-Threonine Kinases/metabolism , Autoantibodies/blood , Homeostasis/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Interleukins/blood , Plasma Cells/immunology , Signal Transduction/immunology
13.
Genes Genomics ; 43(12): 1445-1461, 2021 12.
Article En | MEDLINE | ID: mdl-34480266

BACKGROUND: Tibetan hulless barley (Hordeum vulgare var. nudum), adjusting to the harsh environment on Qinghai-Tibet Plateau, is a good subject for analyzing drought tolerance mechanism. Several unannotated differentially expressed genes (DEGs) were identified through our previous RNA-Seq study using two hulless barley accessions with contrasting drought tolerance. One of these DEGs, HVU010048.2, showed up-regulated pattern under dehydration stress in both drought tolerant (DT) and drought susceptible (DS) accessions, while its function in drought resistance remains unknown. This new gene was named as HvLRX (light responsive X), because its expression was induced under high light intensity while suppressed under dark. OBJECTIVE: To provide preliminary bioinformatics prediction, expression pattern, and drought resistance function of this new gene. METHODS: Bioinformatics analysis of HvLRX were conducted by MEGA, PlantCARE, ProtParam, CELLO et al. The expression pattern of HvLRX under different light intensity, dehydration shock, gradual drought stress, NaCl stress, polyethylene glycol (PEG) 6000 stress and abscisic acid (ABA) treatment was investigated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The function of HvLRX was analyzed by virus induced gene silencing (VIGS) in hulless barley and by transgenic method in tobacco. RESULTS: Full cDNAs of HvLRX were cloned and compared in three hulless barley accessions. Homologues of HvLRX protein in other plants were excavated and their phylogenetic relationship was analyzed. Several light responsive elements (ATC-motif, Box 4, G-box, Sp1, and chs-CMA1a) were identified in its promoter region. Its expression can be promoted under high light intensity, dehydration shock, gradual drought stress, PEG 6000, and NaCl stress, but was almost unchanged in ABA treatment. HvLRX-silenced plants had a higher leaf water loss rate (WLR) and a lower survival rate (SR) compared with controls under dehydration stress. The infected leaves of HvLRX-silenced plants lost their water content quickly and became withered at 10 dpi. The SR of HvLRX overexpressed transgenic tobacco plants was significantly higher than that of wild-type plants. These results indicated HvLRX play a role in drought resistance. Besides, retarded vegetative growth was detected in HvLRX-silenced hulless barley plants, which suggested that this gene is important for plant development. CONCLUSIONS: This study provided data of bioinformatics, expression pattern, and function of HvLRX. To our knowledge, this is the first report of this new dehydration and light responsive gene.


Droughts , Genes, Plant , Hordeum/genetics , Salt Stress , Hordeum/metabolism , Light
14.
Theor Appl Genet ; 134(10): 3225-3236, 2021 Oct.
Article En | MEDLINE | ID: mdl-34132847

KEY MESSAGE: Decisive role of reduced vrs1 transcript abundance in six-rowed spike of barley carrying vrs1.a4 was genetically proved and its potential causes were preliminarily analyzed. Six-rowed spike 1 (vrs1) is the major determinant of the six-rowed spike phenotype of barley (Hordeum vulgare L.). Alleles of Vrs1 have been extensively investigated. Allele vrs1.a4 in six-rowed barley is unique in that it has the same coding sequence as Vrs1.b4 in two-rowed barley. The determinant of row-type in vrs1.a4 carriers has not been experimentally identified. Here, we identified Vrs1.b4 in two-rowed accessions and vrs1.a4 in six-rowed accessions from the Qinghai-Tibet Plateau at high frequency. Genetic analyses revealed a single nuclear gene accounting for row-type alteration in these accessions. Physical mapping identified a 0.08-cM (~ 554-kb) target interval on chromosome 2H, wherein Vrs1 was the most likely candidate gene. Further analysis of Vrs1 expression in offspring of the mapping populations or different Vrs1.b4 and vrs1.a4 lines confirmed that downregulated expression of vrs1.a4 causes six-rowed spike. Regulatory sequence analysis found a single 'TA' dinucleotide deletion in vrs1.a4 carriers within a 'TA' tandem-repeat-enriched region ~ 1 kb upstream of the coding region. DNA methylation levels did not correspond to the expression difference and therefore did not affect Vrs1 expression. More evidence is needed to verify the causal link between the 'TA' deletion and the downregulated Vrs1 expression and hence the six-rowed spike phenotype.


Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Hordeum/growth & development , Hordeum/genetics , Phenotype , Plant Proteins/metabolism , DNA Methylation , Phylogeny , Plant Proteins/genetics
15.
Theor Appl Genet ; 134(8): 2481-2494, 2021 Aug.
Article En | MEDLINE | ID: mdl-33942136

KEY MESSAGE: A novel qualitative locus regulating the uppermost internode elongation of barley was identified and mapped on 6H, and the candidate gene mining was performed by employing various barley genomic resources. The stem of grass crops, such as barley and wheat, is composed of several interconnected internodes. The extent of elongation of these internodes determines stem height, and hence lodging, canopy architecture, and grain yield. The uppermost internode (UI) is the last internode to elongate. Its elongation contributes largely to stem height and facilitates spike exsertion, which is crucial for final grain yield. Despite the molecular mechanism underlying regulation of UI elongation was extensively investigated in rice, little is known in barley. In this study, we characterized a barley spontaneous mutant, Sheathed Spike 1 (SS1), showing significantly shortened UI and sheathed spike (SS). The extension of UI parenchyma cell in SS1 was significantly suppressed. Exogenous hormone treatments and RNA-seq analysis indicated that the suppression of UI elongation is possibly related to insufficient content of endogenous bioactive gibberellin. Genetic analysis showed that SS1 is possibly controlled by a qualitative dominant nuclear factor. Bulked segregant analysis and further molecular marker mapping identified a novel major locus, HvSS1, in a recombination cold spot expanding 173.44-396.33 Mb on chromosome 6H. The candidate gene mining was further conducted by analyzing sequence differences, spatiotemporal expression patterns, and variant distributions of genes in the candidate interval by employing various barley genomic resources of worldwide collections of barley accessions. This study made insight into genetic control of UI elongation in barley and laid a solid foundation for further gene cloning and functional characterization. The results obtained here also provided valuable information for similar research in wheat.


Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Hordeum/growth & development , Hordeum/genetics , Phenotype , Plant Proteins/metabolism , Cloning, Molecular , Plant Proteins/genetics
16.
Immunol Cell Biol ; 99(6): 570-585, 2021 07.
Article En | MEDLINE | ID: mdl-33469941

Mycobacterium tuberculosis (Mtb) can subvert host immune responses and survive in macrophages. Specific Mtb antigens play a critical role in this process. Rv1987, a secretory protein encoded by the gene rv1987 in the region of difference-2 (RD2) of the Mtb genome, is specifically expressed in pathogenic mycobacteria. Our previous work proved that Rv1987 induced a Th2 response in mice and enhanced mycobacterial survival in mouse lungs, but its effect on macrophages, the most important effector immune cell involved in killing Mtb, remains unclear. In this study, we used an M. smegmatis strain overexpressing Rv1987 protein to infect alveolar macrophages and the macrophage cell line RAW264.7 and analyzed the effect of Rv1987 protein on macrophage polarization. Rv1987 induced M2 polarization in macrophages both in vivo and in vitro. The bactericidal ability of these M2 polarized macrophages decreased remarkably, which resulted in the increased survival of bacteria in macrophages. Proteomics, RT-qPCR and western blotting results revealed that the PI3K/Akt1/mTOR signaling pathway was activated in Rv1987-induced M2 macrophages. Meanwhile, the SHIP molecule, a negative regulator of the PI3K/Akt1/mTOR signaling pathway, was significantly downregulated. These results suggest that Rv1987 plays an important role in modulating the host immune response and could be established as a potential drug target.


Mycobacterium tuberculosis , Animals , Macrophages , Mice , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases
17.
Clin Exp Rheumatol ; 39(4): 859-867, 2021.
Article En | MEDLINE | ID: mdl-32896245

OBJECTIVES: Multiple physiological and pathological conditions interfere with the function of the endoplasmic reticulum (ER). However, much remains unknown regarding the impact of ER stress on toll-like receptors (TLRs) -induced inflammatory responses in rheumatoid arthritis (RA). The aim of this study was to reveal the effects of ER stress and its regulator, X-box-binding protein-1 (XBP-1), on the inflammatory response of RA synovial fibroblasts (RASF) to different TLRs ligands. METHODS: ER stress was induced in RASF by incubating with thapsigargin (Tg). TLR2 ligand Pam3CSK4, TLR3 ligand PolyIC, TLR4 ligand LPS were used to stimulate the cells. Effects of ER stress on TLRs-induced inflammatory mediators were determined by using RT-PCR, qPCR and ELISA analysis. Western blots analysis was used to detected the signalling pathways in this process. For gene silencing experiment, control scrambled or XBP-1 specific siRNA were transfected into RASF. T helper (Th)1/Th17 cells expansion was determined by flow cytometry analysis, and IFN-γ/IL-17A production in supernatants were collected for ELISA assay. RESULTS: ER stress potentiated the expression of inflammatory cytokines, MMPs and VEGF in RASF stimulated by different TLRs ligands, which was companied with enhanced the activation of NF-κB and MAPKs signalling pathways. Silencing XBP-1 in RASF could dampen TLRs signalling-simulated inflammatory response under ER stress. Moreover, blockade of XBP-1 reduced the generation of Th1 and Th17 cells mediated by RASF, and suppressed the production of IFN-γ and IL-17A. CONCLUSIONS: Our findings suggest that ER stress and XBP-1 may function in conjunction with TLRs to drive the inflammation of RASF, and this pathway may serve as a therapeutic target for the disease.


Arthritis, Rheumatoid , Endoplasmic Reticulum Stress , Synovial Membrane , X-Box Binding Protein 1 , Cells, Cultured , Fibroblasts/metabolism , Humans , Inflammation , Signal Transduction , Synovial Membrane/metabolism , Toll-Like Receptors/metabolism
18.
Clin Rheumatol ; 40(5): 1835-1842, 2021 May.
Article En | MEDLINE | ID: mdl-33128654

OBJECTIVES: The aim of the study is to identify clusters of lymphocyte subsets within treatment-naive systemic lupus erythematosus (SLE) patients and evaluate the potential association of these clusters with disease activities. METHODS: We conducted a cross-sectional study of consecutive 143 treatment-naive SLE patients in the Affiliated Hospital of Nantong University, China. We used hierarchical cluster analysis to classify individuals into clusters based on circulating lymphocyte subset proportions (CD3+CD4+T cell, CD3+CD8+T cell, CD19+B cell, and CD3-CD16 + CD56 NK cell) via R software. Demographic variables, clinical manifestations, laboratory variables, and disease activities were compared among clusters. RESULTS: The SLE patients (median age 35 (26-48) years, 90.9% female) were divided into four clusters. The clustering features were as follows: cluster 1 (B high), cluster 2 (CD4 high), cluster 3 (CD8 high), and cluster 4 (NK high). SLE patients in cluster 1 showed the highest incidence of arthritis (70.6%, 34.2%, 48.3%, and 42.9% in clusters 1, 2, 3, and 4, respectively; P = 0.046), and patients in cluster 3 and cluster 4 showed significantly a higher incidence of nephritis (35.3%, 25.0%, 48.3%, and 61.9% in in clusters 1, 2, 3, and 4, respectively; P = 0.008). Patients in cluster 2 suffered from lower SLE Disease Activity Index (SLEDAI) score (12.1 ± 5.0, 10.3 ± 5.6, 12.2 ± 4.6, and 14.4 ± 7.3 in clusters 1, 2, 3, and 4, respectively; P = 0.046). Regression analysis indicated that, compared with patients in cluster 2, patients in cluster 1 exhibited higher rate of arthritis (OR 4.53, 95% CI 1.38-14.86, P = 0.013), while patients in cluster 3 (OR 2.85, 95%CI 1.15-7.08, P = 0.024) and cluster 4 (OR 4.93, 95%CI 1.76-13.85, P = 0.002) exhibited higher rate of nephritis. CONCLUSION: This study supports the existence of lymphocyte subset clusters with different clinical features in treatment-naive SLE patients, which could help to differentiate between various subsets of SLE. Key Points • Lymphocyte subsets may occur in a pattern of cluster in treatment-naive SLE patients.


Lupus Erythematosus, Systemic , Lymphocyte Subsets , Adult , China , Cluster Analysis , Cross-Sectional Studies , Female , Flow Cytometry , Humans , Lupus Erythematosus, Systemic/epidemiology , Male
19.
Int J Stem Cells ; 14(1): 58-73, 2021 Feb 28.
Article En | MEDLINE | ID: mdl-33122466

BACKGROUND AND OBJECTIVES: The immunomodulatory potential of mesenchymal stem cells (MSCs) can be regulated by a variety of molecules, especially cytokines. The inflammatory cytokine, TNF-like ligand 1A (TL1A), has been reported as an inflammation stimulator in-multiple autoimmune diseases. Here, we studied the effects of TL1A/TNF-receptor 2 (TNFR2) pathway on the therapeutic potency of bone marrow-derived MSCs (BMSCs). METHODS AND RESULTS: BMSCs, fibroblast-like synoviocytes (FLSs), and H9 and jurkat human T lymphocytes were used in this study. BMSCs paracrine activities, differentiation, proliferation, and migration were investigated after stimulation with TL1A, and intervened with anti-TNFR2. Additionally, the effects of TL1A on BMSCs therapeutic potency were evaluated by treating RA-FLSs, and H9 and jurkat T cells with TL1A-stimulated BMSCs conditioned medium (CM). Indian hedgehog (IHH) involvement was determined by gene silencing and treatment by recombinant IHH (rIHH). TL1A induced BMSCs stemness-related genes, COX-2, IL-6, IDO, TGF-ß and HGF through TNFR2. Also, TL1A corrected biased differentiation and increased proliferation, and migration through TNFR2. Meanwhile, CM of TL1A-stimulated BMSCs decreased the inflammatory markers of RA-FLSs and T cells. Moreover, TL1A-stimulated BMSCs experienced IHH up-regulation coupled with NF-κB and STAT3 signaling up-regulation, while p53 and oxidative stress were down-regulated. Furthermore, treatment of BMSCs by rIHH increased their anti-inflammatory effects. More importantly, knockdown of IHH decreased the ability of TL1A-stimulated BMSCs to alleviating the inflammation in RA-FLSs and T cells. CONCLUSIONS: This study reports the effects of TL1A/TNFR2 pathway on the biological behaviors and therapeutic potency of BMSCs through IHH. These findings could introduce novel procedures to increase the stemness of MSCs in cellular therapy.

20.
J Food Sci ; 85(10): 3141-3149, 2020 Oct.
Article En | MEDLINE | ID: mdl-32857867

Hull-less barley (HLB), especially waxy HLB, contains many physiologically active ingredients; however, its poor processing performance and end-product quality are unfavorable. In this study, 80% waxy or normal HLB wholegrain flour (WGF) and 20% wheat flour were used for baking bread. The farinograph and pasting properties of composite powders, and the nutritional value, textural properties, and in vitro hydrolysis of resultant breads were evaluated. The addition of a high proportion of HLB WGFs significantly increased the nutritional value of breads, especially the ß-glucan contents of waxy HLB breads. The addition of HLB WGFs and a suitable amount of wheat gluten led to a lower degree of softening of HLB bread flours but improved its farinograph characteristics, such as higher water absorption rate, development time, stability time, and farinograph quality number. Although the sensory profiles of HLB breads were considerably lower than those of wheat bread, they still received a good overall acceptability from a panel of sensory evaluators. HLB breads, particularly the waxy types, exhibited higher hardness, gumminess, chewiness, and lower specific volume, glycemic index and equilibrium concentration in starch hydrolysis. After baking, the starch crystallinity of dough changed from A to V type, and the relative crystallinity decreased. Overall, waxy HLB breads had more nutritional value than normal HLB breads. Higher ß-glucan and total dietary fiber content in HLB might have a positive effect on the nutritional value of the resultant breads. However, high ß-glucan and total dietary fiber was also accompanied by a negative effect on the sensory quality and processing performance of the end product. PRACTICAL APPLICATION: The composite flour with 80 g hull-less barley wholegrain flour, 20 g wheat flour, and 30 g wheat gluten can be substituted in breadmaking. Compared to wheat bread, hull-less barley bread exhibited different but acceptable sensory properties and had more nutritional value, particularly the waxy one. Therefore, a high proportion of hull-less barley could be recommended for bread production.


Bread/analysis , Flour/analysis , Food Handling/methods , Hordeum/chemistry , Starch/analysis , Dietary Fiber/analysis , Digestion , Food Additives/analysis , Food Handling/instrumentation , Glutens/analysis , Glycemic Index , Hardness , Humans , Nutritive Value , Triticum/chemistry
...