Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Endocr Res ; 49(2): 86-91, 2024.
Article En | MEDLINE | ID: mdl-38219025

INTRODUCTION: Organoids are three-dimensional cellular aggregates derived from stem cells or primary tissues that can self-organize into organotypic structures and showcase the physiological functions of that organ. Organoids typically comprise multiple organ-specific cell types that are responsible for organ function in vivo. They may also incorporate various cellular and molecular stromal components to recapitulate the in vivo microenvironment of the target organ. METHODS: All articles related to thyroid-like organs were synthesized. Articles published between 1959 and 2023 were assessed, categorized, and analyzed using relevant keywords. RESULTS: As such, organoids provide a model of greater physiological relevance than 2D cell culture for basic and translational research. Murine and human organoids of the thyroid have been established from embryonic stem cells (ESCs), pluripotent stem cells (PSCs) and from various healthy or diseased thyroid tissues. These thyroid organoids have been used in basic and translation research on thyroid-related diseases including hyperthyroidism, Graves' disease, and Hashimoto's thyroiditis. In addition, organoids derived from patients with thyroid cancer retain histopathological features and mutational profile of the original tumor. These patient-derived organoids have been successfully used in in vitro evaluation of drug response of individual patients, demonstrating their potential application in personalized treatment of thyroid cancer. CONCLUSION: In this review article, we have discussed various techniques for establishing thyroid organoids and their applications in thyroid-related diseases as disease models, regenerative medicines, or a tool for drug testing.

2.
J Nutr Biochem ; 125: 109499, 2024 03.
Article En | MEDLINE | ID: mdl-37875229

Transfusional therapy is used to cure anemia but raises the risk of hepatic iron overload (IO), which triggers oxidative stress damage, inflammation, and failure even fibrosis. microRNAs play a vital role in developing hepatic diseases. This study presented the mechanism by which IO induce hepatic inflammation through microRNAs. In this study, microRNA expression profiling in the liver was observed after IO for 2 weeks, in which the target microRNA will be found. IO activating the miR-146α/TRAF6/NF-κB pathway was validated, and the molecular mechanism of the IO-induced decrease of miR-146α in the liver was studied in vivo and in vitro. The expression of TRAF6/NF-κB (p65)-dependent inflammatory factors increased, whereas the expression of miR-146α decreased during the IO-induced inflammatory response in the liver. The reduced expression of HNF4α caused by HIF1α and miR-34α may decrease the expression of miR-146α. Overexpression of miR-146α alleviated the hepatic inflammatory response caused by IO. Our findings indicate that miR-146α is a key factor in inducing hepatic IO inflammation, which will be another potential target to prevent IO-induced hepatic damage.


Iron Overload , MicroRNAs , Humans , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Signal Transduction , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/prevention & control , Iron Overload/complications
3.
Vaccine ; 42(2): 383-395, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38061956

INTRODUCTION: Recombinant acellular pertussis (ap) vaccines containing genetically inactivated pertussis toxin (PTgen) and filamentous hemagglutinin (FHA) with or without tetanus (TT) and diphtheria (DT) vaccines (Td) were found safe and immunogenic in non-pregnant and pregnant women. We report here maternal antibody transfer and safety data in mothers and neonates. METHODS: This is the follow up of a phase 2 trial in 2019 among 400 pregnant women who randomly received one dose of recombinant pertussis-only vaccine containing 1 µg PTgen and 1 µg FHA (ap1gen), or Td combined with ap1gen (Tdap1gen), or with 2 µg PTgen and 5 µg FHA (Tdap2gen), or with 5 µg PTgen and 5 µg FHA (TdaP5gen, Boostagen®, BioNet, Thailand) or chemically-inactivated acellular pertussis comparator (Tdap8chem, Boostrix™, GSK, Belgium), either in the second or third trimester of gestation. IgG against PT, FHA, TT and DT were assessed by ELISA, PT-neutralizing antibodies (PTNA) by Chinese Hamster Ovary cell assay and safety outcomes at delivery in mothers and at birth. RESULTS: Anti-PT and anti-FHA geometric mean concentration (GMC) ratio between infants at birth and mothers at delivery was above 1 in all groups. PT GMC in infants at birth were ≥30 IU/mL in all groups with the highest titers in infants found in TdaP5gen group at birth (118.8 [95% CI 93.9-150.4]). At 2 months, PT GMC ratio to Tdap8chem (98.75% CI) was significantly higher for TdaP5gen (2.6 [1.7-4.0]) and comparable for other recombinant vaccines. No difference in PTNA titers at birth was observed between all groups nor between time of vaccination. Adverse events were comparable in all vaccine groups. CONCLUSIONS: BioNet licensed (TdaP5gen and Tdap2gen) and candidate vaccines (Tdap1gen and ap1gen) when given to pregnant women in the second or third trimester of gestation are safe and have induced passive pertussis immunity to infants.


Diphtheria-Tetanus-acellular Pertussis Vaccines , Tetanus , Whooping Cough , Infant , Infant, Newborn , Cricetinae , Animals , Humans , Female , Pregnancy , Whooping Cough/prevention & control , CHO Cells , Antibodies, Bacterial , Cricetulus , Pertussis Vaccine , Vaccination , Vaccines, Synthetic , Tetanus Toxoid , Antibodies, Neutralizing , Mothers , Postpartum Period
4.
Pharmacol Res ; 196: 106933, 2023 Oct.
Article En | MEDLINE | ID: mdl-37729957

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

5.
J Integr Med ; 21(4): 385-396, 2023 07.
Article En | MEDLINE | ID: mdl-37380564

OBJECTIVE: This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS: The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS: Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION: Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; 21(4):385-396.


Hallucinogens , Stress Disorders, Post-Traumatic , Substance-Related Disorders , Humans , Stress Disorders, Post-Traumatic/drug therapy , Hallucinogens/therapeutic use , Substance-Related Disorders/drug therapy
6.
Vaccine ; 41(31): 4541-4553, 2023 07 12.
Article En | MEDLINE | ID: mdl-37330371

INTRODUCTION: Despite a decrease in infections caused by Bordetella pertussis due to COVID-19 pandemic, booster vaccination of pregnant women is still recommended to protect newborns. Highly immunogenic vaccines containing genetically inactivated pertussis toxin (PTgen) and filamentous hemagglutinin (FHA) may generate comparable anti-PT antibody concentrations, even at lower doses, to chemically inactivated acellular pertussis vaccines (Tdapchem) shown effective for maternal immunization. METHODS: This phase 2 randomized, observer-blind, active-controlled non-inferiority trial was conducted in healthy Thai pregnant women randomly assigned to receive one dose of low-dose recombinant pertussis-only vaccine containing 1 µg PTgen and 1 µg FHA (ap1gen), or tetanus, reduced-dose diphtheria combined with ap1gen (Tdap1gen), or combined with 2 µg PTgen and 5 µg FHA (Tdap2gen), or with 5 µg PTgen and 5 µg FHA (TdaP5gen, Boostagen®) or comparator containing 8 µg of chemically inactivated pertussis toxoid, 8 µg FHA, and 2.5 µg pertactin (Boostrix™, Tdap8chem). Blood was collected at Day 0 and Day 28 post-vaccination. The non-inferiority of the study vaccines was assessed based on anti-PT IgG antibody levels on Day 28 pooled with results from a similarly structured previous trial in non-pregnant women. RESULTS: 400 healthy pregnant women received one dose of vaccine. Combined with data from 250 non-pregnant women, all study vaccines containing PTgen were non-inferior to comparator vaccine (Tdap8chem). Both ap1gen and TdaP5gen vaccines could be considered to have superior immunogenicity to Tdap8chem. Local and systemic solicited reactions were similar among all vaccine groups. CONCLUSIONS: Vaccine formulations containing PTgen were safe and immunogenic in pregnant women. The ap1gen vaccine, with the lowest cost and reactogenicity, may be suitable for use in pregnant women when diphtheria and tetanus toxoids are not needed. This study is registered in the Thai Clinical Trial Registry (www. CLINICALTRIALS: in.th), number TCTR20180725004.


COVID-19 , Diphtheria-Tetanus-acellular Pertussis Vaccines , Diphtheria , Tetanus , Whooping Cough , Infant, Newborn , Humans , Female , Pertussis Toxin/genetics , Pandemics , Pertussis Vaccine , Immunization, Secondary/methods , Tetanus Toxoid , Vaccines, Synthetic , Antibodies, Bacterial , Diphtheria-Tetanus-Pertussis Vaccine
7.
N Engl J Med ; 388(21): 1942-1955, 2023 May 25.
Article En | MEDLINE | ID: mdl-37224196

BACKGROUND: An effective, affordable, multivalent meningococcal conjugate vaccine is needed to prevent epidemic meningitis in the African meningitis belt. Data on the safety and immunogenicity of NmCV-5, a pentavalent vaccine targeting the A, C, W, Y, and X serogroups, have been limited. METHODS: We conducted a phase 3, noninferiority trial involving healthy 2-to-29-year-olds in Mali and Gambia. Participants were randomly assigned in a 2:1 ratio to receive a single intramuscular dose of NmCV-5 or the quadrivalent vaccine MenACWY-D. Immunogenicity was assessed at day 28. The noninferiority of NmCV-5 to MenACWY-D was assessed on the basis of the difference in the percentage of participants with a seroresponse (defined as prespecified changes in titer; margin, lower limit of the 96% confidence interval [CI] above -10 percentage points) or geometric mean titer (GMT) ratios (margin, lower limit of the 98.98% CI >0.5). Serogroup X responses in the NmCV-5 group were compared with the lowest response among the MenACWY-D serogroups. Safety was also assessed. RESULTS: A total of 1800 participants received NmCV-5 or MenACWY-D. In the NmCV-5 group, the percentage of participants with a seroresponse ranged from 70.5% (95% CI, 67.8 to 73.2) for serogroup A to 98.5% (95% CI, 97.6 to 99.2) for serogroup W; the percentage with a serogroup X response was 97.2% (95% CI, 96.0 to 98.1). The overall difference between the two vaccines in seroresponse for the four shared serogroups ranged from 1.2 percentage points (96% CI, -0.3 to 3.1) for serogroup W to 20.5 percentage points (96% CI, 15.4 to 25.6) for serogroup A. The overall GMT ratios for the four shared serogroups ranged from 1.7 (98.98% CI, 1.5 to 1.9) for serogroup A to 2.8 (98.98% CI, 2.3 to 3.5) for serogroup C. The serogroup X component of the NmCV-5 vaccine generated seroresponses and GMTs that met the prespecified noninferiority criteria. The incidence of systemic adverse events was similar in the two groups (11.1% in the NmCV-5 group and 9.2% in the MenACWY-D group). CONCLUSIONS: For all four serotypes in common with the MenACWY-D vaccine, the NmCV-5 vaccine elicited immune responses that were noninferior to those elicited by the MenACWY-D vaccine. NmCV-5 also elicited immune responses to serogroup X. No safety concerns were evident. (Funded by the U.K. Foreign, Commonwealth, and Development Office and others; ClinicalTrials.gov number, NCT03964012.).


Epidemics , Health Status , Meningitis , Meningococcal Vaccines , Vaccines, Conjugate , Humans , Gambia/epidemiology , Mali/epidemiology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/therapeutic use , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/adverse effects , Meningococcal Vaccines/therapeutic use , Child, Preschool , Child , Adolescent , Young Adult , Adult , Immunogenicity, Vaccine , Injections, Intramuscular , Meningitis/epidemiology , Meningitis/prevention & control , Epidemics/prevention & control
8.
Biomed Pharmacother ; 163: 114750, 2023 Jul.
Article En | MEDLINE | ID: mdl-37087978

Sorafenib is the first-line therapeutic agent for hepatocellular carcinoma (HCC), but the drug resistance has become a major impediment. Previously we found that the abnormal iron metabolism in HCC led to iron deficiency, whether it induces sorafenib resistance during the treatment of HCC is not yet disclosed. In this study, we observed the effects of iron deficiency on sorafenib resistance and explored the underlying mechanisms. The results revealed that the killing effects of sorafenib on HCC cells were weakened by iron deficiency but effectively restored by iron re-supplementation. The ferroptosis indicators, including the contents of lipid hydroperoxide (LPO) and malondialdehyde (MDA), the level of intracellular reactive oxygen species (ROS), and the expression of glutathione peroxidase 4 (GPX4), were not significantly changed by iron deficiency in sorafenib-treated HCC cells. However, the sorafenib-induced apoptosis of HCC cells was inhibited by iron deficiency. Notably, the expression of anti-apoptotic protein B-cell lymphoma-2 (BCL-2) was elevated, and the expressions of other apoptotic proteins, BCL2-associated X (Bax), caspase-3, and caspase-9, were inhibited by iron deficiency. Mechanistically, iron deficiency upregulated hypoxia-inducible factor 1 alpha (HIF-1α) to increase BCL-2. Inhibition of HIF-1α suppressed the iron deficiency-induced BCL-2 and sorafenib resistance. In summary, iron deficiency in HCC cells generated sorafenib resistance by increasing HIF-1α and BCL-2, which therefore inhibited the sorafenib-induced apoptosis of HCC cells. These results identified iron deficiency as a new factor of sorafenib resistance in HCC cells, which would be an effective target to alleviate sorafenib resistance.


Antineoplastic Agents , Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit , Iron , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2 , Sorafenib/pharmacology , Sorafenib/therapeutic use
9.
J Nutr Biochem ; 117: 109357, 2023 07.
Article En | MEDLINE | ID: mdl-37085059

The abnormal iron metabolism in liver cancer leads to iron deficiency in tumor tissues. We previously found that iron deficiency promoted liver cancer metastasis, but the mechanisms were not fully understood. In the present study, we identified that the angiogenesis-associated glutamyl aminopeptidase (ENPEP) was consistently decreased in iron-deficient liver tissues, iron-deficient liver tumors, and iron-deprived liver cancer cells. Interestingly, the lower expression of ENPEP was correlated with the poor prognosis of liver cancer patients, while the biomarkers of angiogenesis, CD31 and CD34, were increased in tumor tissues. In vivo imaging of liver-orthotopically implanted and tail vein-injected liver cancer cells showed that iron deficiency increased the pulmonary metastasis of liver cancer. The angiogenesis in iron-deficient tumors was enhanced, and the expression of ENPEP was decreased. Silencing ENPEP expression increased the migration of liver cancer cells and the proliferation of cocultured HUVECs. By sequence analysis, we found that the transcription factor SP1 possessed abundant binding sites in the ENPEP promoter region. Its combination with ENPEP promoters was verified by chromatin immunoprecipitation. The inhibition of SP1 by mithramycin A effectively restored the expression of ENPEP, which was decreased by iron deficiency. In conclusion, these results revealed that iron deficiency in liver tumors decreased the expression of ENPEP by SP1 and increased the angiogenesis and metastasis of liver tumors, which further explained the mechanism by which iron deficiency promoted liver cancer metastasis.


Iron Deficiencies , Liver Neoplasms , Humans , Cell Line , Plicamycin/pharmacology , Iron , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
10.
Healthcare (Basel) ; 11(6)2023 Mar 20.
Article En | MEDLINE | ID: mdl-36981551

(1) Objective: The objective of this study was to experimentally obtain the ideal pressure distribution model of buttock and thigh support for office workers in forward-leaning and upright sitting postures, reproduce the support provided by mesh materials with elastic materials, and propose an effective seat design scheme to improve the comfort of office workers. (2) Method: Based on the seven most popular mesh chairs on the market, pressure distribution experiments, and the fuzzy clustering algorithm, the relatively ideal body pressure distribution matrices were generated for office workers under two common sitting postures, and the corresponding partitioned sitting support surfaces were obtained. A prototype chair was created and validated by combining the ergonomics node coordinates and the physical properties of the materials. (3) Result: An ideal support model of four zones was constructed, and prototype pads were designed and produced according to this model. Subjects were recruited to test the ability of the prototypes to reproduce the ideal pressure distribution maps. (4) Conclusion: The four-zone ideal support model is capable of effectively representing the buttock and thigh support requirements in forward-leaning and upright sitting postures, and it is useful for the development of related products. Studying sitting postures and pressure values generated by different activities of office workers will help to refine the needs of office personnel and provide new ideas for the design of office chairs.

11.
Biol Trace Elem Res ; 201(4): 1689-1694, 2023 Apr.
Article En | MEDLINE | ID: mdl-35614326

The sphingosine-1-phosphate (S1P) transporter spinster homolog 2 (SPNS2) promotes tumor progression by modulating tumor immunity and enhancing tumor cells migration and invasion. Previously we found that iron deficiency in hepatocellular carcinoma upregulated SPNS2 expression to increase tumor metastasis. The present study aimed to identify the underlying mechanism of SPNS2 upregulation. Since the mRNA of SPNS2 was significantly increased, we used a transcription factor activity microarray to find the transcription factor responsible for this. The results showed that iron deprivation in hepatoma cells increased the transcriptional activities of 14 transcription factors while only 2 were decreased. Among these, 3 transcription factors, HIF1α, SP1, and YY1, were predicted to bind with the transcription promoter region of SPNS2. But only HIF1α and SP1 transcriptional activities on SPNS2 were increased by iron deficiency, and the increase of SP1 transcriptional activity was stronger than HIF1α. The protein level of HIF1α was increased by iron deficiency, while SP1 was not changed at the protein level but the phosphorylation level was increased. The inhibitor of HIF1α, PX478, and the inhibitor of SP1, Mithramycin A, reversed the increased mRNA and protein expressions of SPNS2 by iron deficiency, with a more significant effect by Mithramycin A. These results provided a comprehensive view of changes in transcriptional activities by iron deficiency and identified that SP1 was the main regulator of iron deficiency-inducing SPNS2 expression in hepatoma cells.


Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Phosphorylation , Liver Neoplasms/genetics , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism
12.
Curr Res Food Sci ; 5: 2171-2177, 2022.
Article En | MEDLINE | ID: mdl-36387594

The liver is easily injured by exogenous chemicals through reactive oxygen species (ROS), which lead to ferroptosis, a ROS-dependent programmed cell death characterized by iron accumulation and lipid peroxidation. However, whether iron restriction has a positive role in chemicals-induced liver injuries is unknown. The present study investigated the effects of an iron-deficient diet on liver injuries induced by alcohol or diethylnitrosamine (DEN). Mice were fed an iron-deficient diet for four weeks, then treated with three doses of alcohol (5 g/kg, 24 h interval, gavage) to mimic mild liver injury or five doses of DEN (50 mg/kg, 24 h interval, i. p.) to mimic severe liver failure. The results showed that mice were iron-deficient after four weeks of feeding. Interestingly, as evaluated by H&E staining of liver slices, liver/body weight ratio, serum ALT and AST, iron deficiency significantly alleviated liver injuries triggered by alcohol or DEN. The activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), and the expression of CYP2E1 were increased by iron deficiency. Mechanistically, iron deficiency prevented the decrease of glutathione peroxidase 4 (GPX4), which eliminated malondialdehyde (MDA) by utilizing glutathione (GSH). In summary, alcohol- or DEN-induced liver injuries were mitigated by the iron-deficient diet by inhibiting ferroptosis, which might be a promising measure for preventing liver injuries induced by alcohol, DEN, or other exogenous chemicals.

13.
Mol Omics ; 18(8): 805-813, 2022 09 26.
Article En | MEDLINE | ID: mdl-35946375

The active ingredients of Traditional Chinese Medicine are an important source of bioactive molecules and play an important role in the research and development of innovative drugs. FA-30, which is a derivative of natural product ferulic acid, inhibited cervical cancer cell proliferation and induced apoptosis as well. To understand the underlying mechanisms of FA-30, a complementary multi-omics study was conducted. Cysteine and methionine metabolism and aminoacyl-tRNA biosynthesis pathways were significantly changed both at the metabolic level and proteomic level. This may help us to get a better understanding of cervical cancer and FA-30 at the same time.


Biological Products , Uterine Cervical Neoplasms , Coumaric Acids , Cysteine , Female , Humans , Methionine , Proteomics , RNA, Transfer
14.
Hepatol Commun ; 6(10): 2914-2924, 2022 10.
Article En | MEDLINE | ID: mdl-35811443

It is interesting that high iron is an independent inducer or cofactor of hepatocellular carcinoma (HCC) while the amount of iron is decreased in the liver tumor tissues. Due to the previous findings that iron deficiency promoted HCC metastasis, it is of significance to identify the underlying mechanism of iron deficiency in HCC. The tumor iron content and expressions of iron-metabolic molecules were observed in the primary liver cancers of rats and mice. The molecules that changed independently of iron were identified by comparing the expression profiles in the human HCC tissues and iron-deprived HCC cells. The downstream effects of these molecules on regulating intracellular iron content were investigated in vitro and further validated in vivo. Both in primary liver cancers of rats and mice, we confirmed the decreased iron content in tumor tissues and the altered expressions of iron-metabolic molecules, including transferrin receptor 1 (TfR1), six-transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), SLC46A1, ferroportin, hepcidin, and ferritin. Among these, STEAP3, DMT1, and SLC46A1 were altered free of iron deficiency. However, only silence or overexpression of SLC46A1 controlled the intracellular iron content of HCC cells. The interventions of STEAP3 or DMT1 could not change the intracellular iron content. Lentivirus-mediated regain of SLC46A1 expression restored the iron content in orthotopically implanted tumors, with correspondingly changes in the iron-metabolic molecules as iron increasing. Conclusion: Taken together, these results suggest that the loss of SLC46A1 expression leads to iron deficiency in liver tumor tissues, which would be an effective target to manage iron homeostasis in HCC.


Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Ferritins/genetics , Hepcidins/genetics , Humans , Iron/metabolism , Liver Neoplasms/genetics , Male , Mice , Proton-Coupled Folate Transporter , Rats , Receptors, Transferrin/genetics
15.
Biomed Chromatogr ; 36(9): e5417, 2022 Sep.
Article En | MEDLINE | ID: mdl-35633112

Docetaxel is one of the clinical first-line drugs and its combination with other chemotherapy agents for advanced or metastatic cancers has attracted widespread attention. Therefore, to promote the clinical application of docetaxel alone or in combination, a comprehensive investigation of the metabolic mechanism of docetaxel is of great importance. Here, we apply an integrative analysis of metabolomics and network pharmacology to elucidate the underlying mechanisms of docetaxel. After taking the intersection of the aforesaid two methods, five pathways including ABC (ATP-binding cassette) transporters, central carbon metabolism in cancer, glycolysis and gluconeogenesis, cysteine and methionine metabolism, and arginine biosynthesis have been screened. Concerning the interaction network of these pathways and the anti-apoptosis effect of docetaxel itself, the central carbon metabolism in cancer pathway was mainly focused on. This study may help delineate global landscapes of cellular protein-metabolite interactions, to provide molecular insights about their mechanisms of action as well as to promote their clinical applications.


Network Pharmacology , Tandem Mass Spectrometry , Carbon , Chromatography, Liquid , Docetaxel/pharmacology , Metabolic Networks and Pathways , Metabolomics/methods
16.
Vaccine X ; 10: 100143, 2022 Apr.
Article En | MEDLINE | ID: mdl-35243320

INTRODUCTION: Japanese encephalitis (JE) virus is one of the leading causes of viral encephalitis across temperate and tropical zones of Asia. The live attenuated SA 14-14-2 JE vaccine (CD-JEV) is one of three vaccines prequalified by the World Health Organization (WHO) to prevent JE. WHO currently recommends a single CD-JEV dose for infants in endemic settings. However, in the absence of long-term immunogenicity data, WHO has indicated a need for long-term immunogenicity studies to inform optimal dosing schedules and determine the need for booster doses. METHODS: This Phase 4, open-label clinical study measured neutralizing antibody (NAb) titers in Bangladeshi children three and four years after primary CD-JEV vaccination and 7 and 28 days after a booster CD-JEV vaccination given four years after primary vaccination. The study also assessed the tolerability and safety of the booster dose. A NAb titer of ≥1:10 was considered seroprotective. RESULTS: Of 560 children vaccinated between 10 and 12 months of age with CD-JEV three years earlier and enrolled in this study from 30 July 2015 through 03 January 2016, 52 (9.3%; 95% CI: 7.2-12.0) had a seroprotective titer at enrollment. One year later, of 533 children, 66 (12.4%; 95% CI: 9.9-15.5) had a seroprotective titer before receiving a booster dose. Of 524 children who received a booster CD-JEV dose, 479 (91.4%; 95% CI: 88.7-93.5) and 514 (98.1%; 95% CI: 96.5-99.0) were seroprotected 7 and 28 days later, respectively. The geometric mean titer (GMT) was 6 (95% CI: 6-6) at baseline, 105 (95% CI: 93-119) 7 days post-booster, and 167 (95% CI: 152-183) 28 days post-booster. No vaccine-associated neurologic adverse events or other serious adverse events were noted following the booster dose. CONCLUSIONS: Although most children did not have measurable antibody titers three and four years after a single primary CD-JEV dose, more than 90% of seronegative children had a strong anamnestic response within one week of a booster dose. This suggests that these children were immune despite the absence of measurable NAb prior to their booster.ClinicalTrials.gov Identifier: NCT02514746.

17.
Mol Ther ; 30(2): 703-713, 2022 02 02.
Article En | MEDLINE | ID: mdl-34547466

Iron dyshomeostasis is associated with hepatocellular carcinoma (HCC) development. However, the role of iron in HCC metastasis is unknown. This study aimed to elucidate the underlying mechanisms of iron's enhancement activity on HCC metastasis. In addition to the HCC cell lines and clinical samples in vitro, iron-deficient (ID) mouse models were generated using iron-free diet and transferrin receptor protein knockout, followed by administration of HCC tumors through either orthotopic or ectopic route. Clinical metastatic HCC samples showed significant ID status, accompanied by overexpression of sphingosine-1-phosphate transporter spinster homolog 2 (SPNS2). Mechanistically, ID increased SPNS2 expression, leading to HCC metastasis in both cell cultures and mouse models. ID not only altered the anti-tumor immunity, which was indicated by phenotypes of lymphatic subsets in the liver and lung of tumor-bearing mice, but also promoted HCC metastasis in a cancer cell autonomous manner through the SPNS2. Since germline knockout of globe SPNS2 showed significantly reduced HCC metastasis, we further developed hepatic-targeting recombinant adeno-associated virus vectors to knockdown SPNS2 expression and to inhibit iron-regulated HCC metastasis. Our observation indicates the role of iron in HCC pulmonary metastasis and suggests SPNS2 as a potential therapeutic target for the prevention of HCC pulmonary metastasis.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Iron/metabolism , Liver Neoplasms/genetics , Lysophospholipids , Mice , Neoplasm Metastasis , Sphingosine/analogs & derivatives
18.
Behav Brain Res ; 418: 113647, 2022 02 10.
Article En | MEDLINE | ID: mdl-34743948

BACKGROUND: Chronic stress is one of the most important causes of depression, accompanied by neuroinflammation and hippocampal injuries. Long-term elevation of glucocorticoid leads to activation of NF-κB and inhibition of GPR39/CREB/BDNF pathway, which is pivotal for neuroprotection and neurogenesis. The present study thus was designed to determine the relationship between NF-κB and GPR39/CREB/BDNF pathway. METHODS: Depressive-like behaviors were induced by chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) in mice. Corticosterone, inflammatory cytokines, and GPR39/CREB/BDNF pathway were determined by ELISA and Western Blot assays. The activation of NF-κB and inhibition of GPR39 were connected by bioinformatic analysis and experimentally validated in hippocampus cells by knock-in and knock-down techniques. RESULTS: CUMS and CRS led to an elevation of serum corticosterone and depressive-like behaviors in mice, with activation of NF-κB subunit p65 in the hippocampus and elevations of TNFα and IL-6. The expression of GPR39/CREB/BDNF pathway in the hippocampus was inhibited. Bioinformatic analysis revealed that four miRNAs, miR-96, miR-143, miR-150, and miR-182, were potentially transcribed by NF-κB and bound with GPR39 mRNA. NF-κB overexpression increased miR-182 expression and decreased GPR39 expression in hippocampus cells. Its inhibitor led to reverse effects. miR-182 mimics or inhibitors also regulated GPR39 expression in hippocampus cells and more importantly, blocked the regulation of NF-κB on GPR39. CONCLUSIONS: The results suggested that activation of NF-κB inhibited GPR39/CREB/BDNF pathway through increasing miR-182 in chronic stress-induced depressive-like behaviors. The negative-regulation features of miRNAs might be important for neuroinflammation-induced inhibition of neurofunction in depression.


Depression/metabolism , Hippocampus/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Computational Biology , Corticosterone/blood , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Male , Mice , Receptors, G-Protein-Coupled/metabolism , Restraint, Physical , Stress, Psychological/metabolism
19.
Vaccine ; 40(15): 2352-2361, 2022 04 01.
Article En | MEDLINE | ID: mdl-34789403

BACKGROUND: A phase 2 randomized-controlled safety and immunogenicity trial evaluating different doses of recombinant acellular pertussis vaccine containing genetically-inactivated pertussis toxin (PTgen) was conducted in women of childbearing age in Thailand to identify formulations to advance to a trial in pregnant women. METHODS: A total of 250 women were randomized 1:1:1:1:1 to receive one dose of one of three investigational vaccines including low-dose recombinant pertussis-only vaccine containing 1 µg PTgen and 1 µg FHA (ap1gen), tetanus, reduced-dose diphtheria (Td) combined to ap1gen (Tdap1gen) or combined to recombinant pertussis containing 2 µg PTgen and 5 µg FHA (Tdap2gen), or one dose of licensed recombinant TdaP vaccine containing 5 µg PTgen and 5 µg FHA (Boostagen®, TdaP5gen) or licensed Tdap vaccine containing 8 µg of chemically inactivated pertussis toxoid (PTchem), 8 µg FHA, and 2.5 µg pertactin (PRN) (BoostrixTM, Tdap8chem). Serum Immunoglobulin G (IgG) antibodies against vaccine antigens were measured before and 28 days after vaccination by ELISA. To advance to a trial in pregnant women, formulations had to induce a PT-IgG seroresponse rate with a 95% confidence interval (95% CI) lower limit of ≥ 50%. RESULTS: Between 5 and 22 July 2018, a total of 250 women with median age of 31 years were enrolled. Post-vaccination PT-IgG seroresponse rates were 92% (95% CI 81-98) for ap1gen, 88% (95% CI 76-95) for Tdap1gen, 80% (95% CI 66-90) for Tdap2gen, 94% (95% CI 83-99) for TdaP5gen, and 78% (95% CI 64-88) for Tdap8chem. Frequencies of injection site and systemic reactions were comparable between the groups. No serious adverse events were reported during the 28-day post-vaccination period. CONCLUSIONS: All recombinant acellular pertussis vaccines were safe and immunogenic in women of childbearing age, and all met pre-defined immunogenicity criteria to advance to a trial in pregnant women. CLINICAL TRIAL REGISTRATION: Thai Clinical Trial Registry, TCTR20180321004.


Diphtheria-Tetanus-acellular Pertussis Vaccines , Whooping Cough , Adult , Antibodies, Bacterial , Diphtheria-Tetanus-Pertussis Vaccine , Female , Humans , Immunization, Secondary , Pertussis Toxin/genetics , Pregnancy , Whooping Cough/prevention & control
20.
N Engl J Med ; 384(22): 2115-2123, 2021 06 03.
Article En | MEDLINE | ID: mdl-34077644

BACKGROUND: Neisseria meningitidis serogroups A, B, C, W, X, and Y cause outbreaks of meningococcal disease. Quadrivalent conjugate vaccines targeting the A, C, W, and Y serogroups are available. A pentavalent vaccine that also includes serogroup X (NmCV-5) is under development. METHODS: We conducted a phase 2, observer-blinded, randomized, controlled trial involving Malian children 12 to 16 months of age. Participants were assigned in a 2:2:1 ratio to receive nonadjuvanted NmCV-5, alum-adjuvanted NmCV-5, or the quadrivalent vaccine MenACWY-D, administered intramuscularly in two doses 12 weeks apart. Participants were followed for safety for 169 days. Immunogenicity was assessed with an assay for serum bactericidal antibody (SBA) with rabbit complement on days 0, 28, 84, and 112. RESULTS: A total of 376 participants underwent randomization, with 150 assigned to each NmCV-5 group and 76 to the MenACWY-D group; 362 participants received both doses of vaccine. A total of 1% of the participants in the nonadjuvanted NmCV-5 group, 1% of those in the adjuvanted NmCV-5 group, and 4% of those in the MenACWY-D group reported local solicited adverse events; 6%, 5%, and 7% of the participants, respectively, reported systemic solicited adverse events. An SBA titer of at least 128 was seen in 91 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 36 to 99% (excluding serogroup X) of those in the MenACWY-D group at day 84 (before the second dose); the same threshold was met in 99 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 92 to 100% (excluding serogroup X) of those in the MenACWY-D group at day 112. Immune responses to the nonadjuvanted and adjuvanted NmCV-5 formulations were similar. CONCLUSIONS: No safety concerns were identified with two doses of NmCV-5. A single dose of NmCV-5 elicited immune responses that were similar to those observed with two doses of MenACWY-D. Adjuvanted NmCV-5 provided no discernible benefit over nonadjuvanted NmCV-5. (Funded by the U.K. Foreign, Commonwealth, and Development Office; ClinicalTrials.gov number, NCT03295318.).


Immunogenicity, Vaccine , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Adjuvants, Immunologic , Alum Compounds , Female , Humans , Infant , Injections, Intramuscular , Male , Mali , Meningococcal Vaccines/adverse effects , Neisseria meningitidis , Serogroup , Single-Blind Method , Vaccines, Conjugate/immunology
...