Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400107, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234815

RESUMEN

Psoriasis is a chronic skin disease characterized by abnormal proliferation and inflammation of epidermal keratinocytes. Fibroblast growth factor 12 (FGF12) is implicated in the regulation of diverse cellular signals; however, its precise mechanism in psoriasis requires further investigation. In this study, high expression of FGF12 is observed in the epidermis of skin lesion in psoriasis patients and imiquimod (IMQ)-induced psoriasis like-dermatitis. Moreover, specific loss of FGF12 in keratinocytes in IMQ-induced psoriasis model alleviates psoriasis-like symptoms and reduces proliferation. In vitro RNA sequencing demonstrates that knockdown of FGF12 effectively arrests the cell cycle, inhibits cell proliferation, and predominantly regulates the p53 signaling pathway. Mechanistically, FGF12 is selectively bound to the RING domain of MDM2, thus partially inhibiting the binding of ß-Trcp to MDM2. This interaction inhibits ß-Trcp-induced-K48 ubiquitination degradation of MDM2, thereby suppressing the activity of the p53 signaling pathway, which results in excessive cell proliferation. Last, the alleviatory effect of FGF12 deficiency on psoriasis progression is reversed by p53 knockdown. In summary, these findings provide valuable insights into the mechanisms by which FGF12 suppresses p53 signaling in keratinocytes, exacerbating the development of psoriasis. This positive regulatory loop highlights the potential of FGF12 as a therapeutic target to manage psoriasis.

2.
Sci Rep ; 14(1): 18915, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143133

RESUMEN

The physical characteristics of electromagnetic waves are combined with digital information in coding metasurfaces. Coding metasurfaces enable precise control of beams by flexibly designing coding sequences. However, achieving continuous multivariate modulation of electromagnetic waves on passive flexible coded metasurfaces remains a challenge. Previous passive coding metasurfaces have a fixed phase difference between adjacent coding units throughout the operating frequency band, and when the coding pattern is defined, the coded metasurface can only achieve a single electromagnetic function. Our proposed frequency coding metasurface units vary linearly in phase difference over the operating frequency band with different phase sensitivities. Frequency coding metarsurfaces enable a wide range of tunable and versatile electromagnetic energy radiation, without introducing any active devices and changing the coding pattern. As a demonstration of the concept, we have shown theoretically and numerically that frequency coding metasurface can achieve successive transformations of electromagnetic functions, including multi-beam generation, anomalous deflection and diffuse scattering. In addition, beam sweeping function is achieved by means of spatially non-periodically distributed frequency coding metasurface. When the frequency of the incident wave is changed, the deflection angle of the beam is also changed. In addition to the tunability of properties, research on coding metasurfaces has tended to be limited to rigid materials. Flexible coding metasurfaces have potential applications in microwave antennas, radar and aircraft. The passive flexible frequency coding metasurfaces provide a novel approach to manipulating electromagnetic waves with increased design flexibility. This promises applications in microwave antennas, radar, aircraft, and satellite communications.

3.
Cancer Med ; 11(6): 1454-1464, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35128835

RESUMEN

BACKGROUND: Nucleolin (NCL, C23) is a multifunctional phosphoprotein that plays a vital role in modulating the survival, proliferationand apoptosis of cancer cells. However, the effects of NCL on cervical cancer and the underlying mechanisms behind this are poorly understood. METHODS: Lentiviral transfection technology was used to construct NCL knockdown cell lines. MTT, colony formation assays, and tumorigenic assays in vivo were performed to observe cell proliferation. HOECHST 33342 staining, flow cytometry, and caspase activity assay were used to test cell apoptosis. RNA-Seq, Western blotting, and RT-PCR were conducted to investigate the specific molecular mechanism. RESULTS: NCL knockdown inhibited cell proliferation and promoted apoptosis both in vivo and in vitro. Mechanistic studies revealed that NCL knockdown inhibited the PI3K/AKT pathway by upregulating FGF, ITGA, TNXB, VEGF, Caspase 3, and Bax, as well as by downregulating AKT, GNB4, CDK6, IL6R, LAMA, PDGFD, PPP2RSA and BCL-2. In addition, the expression levels of apoptosis-related genes after using a PI3K inhibitor LY294002 were consistent with shRNA studies, while treatment with a 740Y-P agonist showed the opposite effect. CONCLUSIONS: Our findings indicate that downregulation of NCL may be a novel treatment strategy forcervical cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Fosfoproteínas , Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión al ARN , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Nucleolina
4.
Anticancer Agents Med Chem ; 21(10): 1240-1249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32900352

RESUMEN

OBJECTIVE: To investigate the effects of Phycoerythrin (PE) on the human ovarian cancer cell line SKOV-3 and its antitumor mechanisms from a transcriptional point of view. METHODS: SKOV-3 cells were exposed to different concentrations of phycoerythrin. The efficiency of this treatment was evaluated through cell growth inhibition, changes in cell morphology, apoptosis and intracellular ROS levels. High throughput sequencing (RNA-seq) was performed to screen Differentially Expressed Genes (DEGs), which was verified using RT-PCR and Western blotting. RESULTS: PE showed a significant inhibitory effect on the growth of SKOV-3 cells in a time- and dose-dependent manner. H&E staining, electron microscopy and flow cytometry revealed that PE induced apoptosis in SKOV-3 cells. Transcriptome analysis showed that 2963 genes were differentially expressed between untreated or PEtreated cells. GO and KEGG pathway analyses identified 16 classical pathways that were enriched. We verified 8 DEGs including, JNK, GADD45A, EDEM2, RAD23, UBQLN, CAPN1, XBP1, and OS9. These results were consistent with the results from transcriptional sequences. CONCLUSION: The inhibitory effect of PE on SKOV-3 cells was a result of interaction with multiple pathways and signaling molecules. Among these, the ROS/JNK/Bcl-2 signaling pathway, upregulation of JNK, GADD45A and RAD23 as well as downregulation of XBP1 and OS9 played a critical role in the PE -induced apoptosis in human ovarian cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Gracilaria/química , Ficoeritrina/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Ficoeritrina/química , Ficoeritrina/aislamiento & purificación , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA