Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
J Sci Food Agric ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38757804

BACKGROUND: Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD: Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS: The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION: The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.

2.
Environ Pollut ; 354: 124178, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38763294

Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.


Cadmium , Melatonin , Cadmium/toxicity , Melatonin/pharmacology , Soil Pollutants/toxicity , Species Specificity , Brassica napus/drug effects , Photosynthesis/drug effects , Antioxidants/metabolism
3.
Front Microbiol ; 15: 1360988, 2024.
Article En | MEDLINE | ID: mdl-38559356

Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.

4.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Article En | MEDLINE | ID: mdl-37998919

The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.

5.
Microorganisms ; 11(11)2023 Oct 31.
Article En | MEDLINE | ID: mdl-38004690

Bacterial growth, under laboratory conditions or in a natural environment, goes through different growth phases. Some gene expressions are regulated with respect to the growth phase, which allows bacteria to adapt to changing conditions. Among them, many gene transcriptions are controlled by RpoHI or RpoHII in Rhodobacter sphaeroides. In a previous study, it was proven that the alternative sigma factors, RpoE, RpoHI, and RpoHII, are the major regulators of oxidative stress. Moreover, the growth of bacteria reached a stationary phase, and following the outgrowth, rpoE, rpoHI, and rpoHII mRNAs increased with respect to the growth phase. In this study, we demonstrated the regulatory function of alternative sigma factors in the rsp_0557 gene. The gene rsp_0557 is expressed with respect to the growth phase and belongs to the RpoHI/RpoHII regulons. Reporter assays showed that the antisigma factor ChrR turns on or over the RpoE activity to regulate rsp_0557 expression across the growth phase. In the exponential phase, RpoHII and sRNA Pos19 regulate the expression of rsp_0557 to an appropriate level under RpoE control. In the stationary phase, RpoHI and Pos19 stabilize the transcription of rsp_0557 at a high level. During outgrowth, RpoHI negatively regulates the transcription of rsp_0557. Taken together, our data indicate that these regulators are recruited by cells to adapt to or survive under different conditions throughout the growth phase. However, they still did not display all of the regulators involved in growth phase-dependent regulation. More research is still needed to learn more about the interaction between the regulators and the process of adapting to changed growth conditions and environments.

6.
BMC Genomics ; 24(1): 538, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697255

Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.


Codon Usage , Magnoliopsida , Female , Pregnancy , Humans , Amino Acids , Introns , Mutation
7.
Front Microbiol ; 14: 1190624, 2023.
Article En | MEDLINE | ID: mdl-37415810

The dried tuber of Alisma orientale (Sam.) Juzep. (AOJ) is a traditional Chinese medicine with high medicinal value. The endophytic fungi of medicinal plants are a treasure house of natural compounds. However, there is a lack of research on the diversity and biological activity of endophytic fungi of AOJ. In this study, high-throughput sequencing technology was used to study the diversity of endophytic fungi in the roots and stems of AOJ, and endophytic fungi with a high output of phenols and flavonoids were screened by chromogenic reaction, and the antioxidant and antibacterial activities and chemical constituents of crude extracts of their fermentation broth were studied. A total of 3,426 amplicon sequence variants (ASVs) belonging to 9 phyla, 27 classes, 64 orders, 152 families, and 277 genera were identified from AOJ. There were significant differences in the endophytic fungal communities of AOJ roots and stems, as well as in the endophytic fungal communities of triangular AOJ and circular AOJ. In addition, 31 strains of endophytic fungi were isolated from AOJ, of which 6 strains had good antioxidant and antibacterial activities. The crude extract of YG-2 had the strongest free radical scavenging ability and bacteriostatic ability, and its IC50 DPPH, IC50 ABTS, and IC50⋅OH values were 0.009 ± 0.000 mg/mL, 0.023 ± 0.002 mg/mL, and 0.081 ± 0.006 mg/mL, respectively. The results of LC-MS showed that the main component of the crude extract of YG-2 was caffeic acid (10.12 µmol/g). Overall, the results of this study preliminarily elucidated the diversity and community composition of endophytic fungi of AOJ, indicating that AOJ endophytic fungi have abundant secondary metabolites and good antioxidant and antibacterial activities. This study provides an important reference for further research, development and utilization of AOJ endophytic fungi and a theoretical basis for the further development of the endophytic fungus YG-2 (Chaetomium globosum) as a source of antioxidants.

8.
Int J Biol Macromol ; 240: 124377, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37044322

In this study, EPS-Fe(III) complexes were synthesized, and their structural characteristics, thermal stability, antioxidant activity and digestive properties were evaluated. The content of iron in the EPS-Fe(III) complex was 6.34 ± 1.43 %. The absorbance bands of EPS and EPS-Fe(III) complexes were easily changed, indicating that iron ions can interact with the hydroxyl or carboxyl groups of EPS. Energy spectrometric analysis showed that a strong iron signal was observed in the EPS-Fe(III) complex. The IC50 values of the EPS-Fe(III) complex for DPPH, hydroxyl radical and ABTS were 1.52 mg/mL, 2.63 mg/mL and 1.20 mg/mL, respectively. Under oxidative stress, EPS-Fe(III) can prolong the lifespan of nematodes through the DAF-16 and SKN-1 pathways. Under the condition of gastric juice and intestinal juice, the iron content released from artificial intestinal juice reached 66 %. In addition, the negative effect of trypsin or polyphenols on the solubility of iron in EPS-Fe(III) digestive solution was lower than that in ferric chloride digestive solution. In conclusion, the EPS-Fe(III) complex can be used as a new type of iron supplement, which has good antioxidant activity, high stability and good water solubility.


Cordyceps , Iron , Iron/metabolism , Ferric Compounds/chemistry , Antioxidants/pharmacology , Cordyceps/chemistry
9.
J Sci Food Agric ; 103(9): 4638-4648, 2023 Jul.
Article En | MEDLINE | ID: mdl-36935348

BACKGROUND: Blueberry extract (BE) is rich in phenols, especially anthocyanins. Anthocyanins regulate the inflammatory response in mice and may be related to gut microbiota and bile acid receptors. The aim of the present study was to explore the effects of BE on the inflammatory response by regulating gut microbiota and bile acid receptors in mice administered Escherichia coli lipopolysaccharide (LPS). METHOD: Thirty male KM mice were randomly divided into three groups: CON (control diet) group; LPS (LPS stimulation) group; and LPS + BE (LPS stimulation, 5% BE intervention) group. RESULTS: our results showed that, compared with the LPS group, the addition of BE decreased the level of inflammatory factors in serum and tissues, inhibited the TLR4/MyD88 signaling pathway, protected the intestinal barrier and activated FXR/TGR5, which was related to gut microbiota (especially Akkermansia). The active component (e.g., cyanidin 3-O-glucoside, C3G) in BE may be an important factor in regulating gut microbiota. CONCLUSION: BE alleviated the inflammatory response mainly by activating bile acid receptor expression and regulating the gut microbiota; this effect may be related to the composition of bioactive substances in BE. © 2023 Society of Chemical Industry.


Anthocyanins , Gastrointestinal Microbiome , Mice , Male , Animals , Anthocyanins/pharmacology , Lipopolysaccharides , Signal Transduction , Inflammation/drug therapy , Bile Acids and Salts , Mice, Inbred C57BL
10.
Life (Basel) ; 13(2)2023 Jan 29.
Article En | MEDLINE | ID: mdl-36836728

Under dry-hot valley climates, Conyza blinii (also known as Jin Long Dan Cao), suffers from nocturnal low-temperature stress (LTS) during winter. Here, to investigate the biological significance of terpenoid metabolism during LTS adaptation, the growth state and terpenoid content of C. blinii under different LTS were detected, and analyzed with the changes in phytohormone. When subjected to LTS, the results demonstrated that the growth activity of C. blinii was severely suppressed, while the metabolism activity was smoothly stimulated. Meanwhile, the fluctuation in phytohormone content exhibited three different physiological stages, which are considered the stress response, signal amplification, and stress adaptation. Furthermore, drastic changes occurred in the distribution and accumulation of terpenoids, such as blinin (diterpenoids from MEP) accumulating specifically in leaves and oleanolic acid (triterpenoids from MVA) accumulating evenly and globally. The gene expression of MEP and MVA signal transduction pathways also changes under LTS. In addition, a pharmacological study showed that it may be the ABA-SA crosstalk driven by the LTS signal, that balances the metabolic flux in the MVA and MEP pathways in an individual manner. In summary, this study reveals the different standpoints of ABA and SA, and provides a research foundation for the optimization of the regulation of terpenoid metabolic flux within C. blinii.

11.
Carbohydr Polym ; 303: 120481, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36657852

Polysaccharides were the key ingredients of many herbal medicines, and were responsible for multiple pharmacological activities. In this study, a novel polysaccharide fraction, named SLP-2, was isolated from Stauntonia leucantha fruits, and purified by DEAE-52 and Sephadex G-100 column chromatography. Furthermore, SLP-2 was identified by congo red, methylation, partial acid hydrolysis and NMR. The results indicated that the backbone of SLP-2 was composed of →4)-ß-D-Galp-(1 â†’ 4)-ß-D-Galp-(1→ substituted at C-6 with 1,5-linked arabinan. SLP-2 had good anti-oxidation ability in vitro. Surprisingly, we found that reduction of carboxyl groups and methylation of hydroxyl groups enhanced the ability to scavenge 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and inhibit lipid peroxidation, and weakened the activity to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and reduce ferric iron.


Fruit , Galactans , Galactans/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Oxidation-Reduction
12.
Plant Foods Hum Nutr ; 78(1): 154-159, 2023 Mar.
Article En | MEDLINE | ID: mdl-36385463

Bioactive polysaccharides have numerous pharmacological effects that are beneficial to human health. Akebia trifoliata (Thunb.) Koidz. has great development prospects as a food resource with medicinal value. The polysaccharides (ATFP) were extracted from A. trifoliata fruit by an aqueous two-phase system. ATFP-3, purified with DEAE-52 and Sephadex G-200 from ATFP, was mainly composed of glucose (47.55%) and galactose (20.39%). Its hydroxyl radical scavenging rate was 89.30% at 1.60 mg/mL and its IC50 was 0.29 mg/mL. ATFP-3 significantly enhanced the survival rate of Caenorhabditis elegans under thermal or oxidative stress. Furthermore, ATFP-3 could prolong the lifespan of C. elegans and improve the activities of the antioxidant enzyme, while also decrease the accumulation of lipofuscin and the level of malondialdehyde (MDA) in aging worms. Thus, ATFP-3 has application potential in health benefits for humans.


Caenorhabditis elegans , Fruit , Animals , Humans , Aging , Antioxidants/pharmacology , Polysaccharides
13.
Front Pharmacol ; 13: 1049890, 2022.
Article En | MEDLINE | ID: mdl-36386171

Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant including a variety of active substances, which may be an available resource for the treatment of related diseases. To expand the medicinal uses of CX, this study aims to explore the antioxidant, anti-aging and neuroprotective effects of the Ligusticum chuanxiong leaves (CXL) and rhizome (CXR) extracts. We first characterize CX phytochemical spectrum by LC-MS as well as antioxidant capacity. Acute toxicity, anti-oxidative stress capacity, lifespan and healthspan was evaluated in C elegans N2. Neuroprotective effect was evaluated in vitro and in vivo (C elegans CL4176 and CL2355). In this study, we detected 74 and 78 compounds from CXR and CXL, respectively, including phthalides, alkaloids, organic acids, terpenes, polyphenols and others. Furthermore, we found that CXs not only protect against oxidative stress, but also prolong the lifespan, alleviate lipofuscin, malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and improve movement level, antioxidant enzyme activity in C elegans N2. However, only CXR reduced the ß-amyloid peptide (Aß)-induced paralysis phenotype in CL4176s and alleviated chemosensory behavior dysfunction in CL2355s. In addition, CXR treatment reduced the production of Aß and ROS, enhanced SOD activity in CL4176s. The possible mechanism of anti-aging of CXL and CXR is to promote the expression of related antioxidant pathway genes, increase the activity of antioxidant enzymes, and reduce the accumulation of ROS, which is dependent on DAF-16 and HSF-1 (only in CXR). CXR was able to activate antioxidase-related (sod-3 and sod-5) and heat shock protein genes (hsp-16.1 and hsp-70) expression, consequently ameliorating proteotoxicity related to Aß aggregation. In summary, these findings demonstrate the antioxidant, anti-aging and neuroprotective (only in CXR) activities of the CX, which provide an important pharmacological basis for developing functional foods and drugs to relieve the symptoms of aging and AD. However, the material basis of neuroprotective activity and antiaging effects need to be elucidated, and the relationship between these activities should also be clarified in future studies.

14.
Front Pharmacol ; 13: 983716, 2022.
Article En | MEDLINE | ID: mdl-36110524

The chemical composition and antioxidant activity of extracts (POE) of Penicillium oxalate isolated from Ligusticum chuanxiong Hort have been investigated. However, the biological activity of POE is limited, and its antioxidant, stress resistance and DNA protection effects in vivo are unclear. The current study aims to explore the beneficial effects of POE on DNA damage protection in pBR322 plasmid and lymphocytes and stress resistance in Caenorhabditis elegans. The results showed that POE increased the survival rate of C. elegans under 35°C, UV and H2O2 stress, attenuated ROS and MDA accumulation, and enhanced the activity of some important enzymes (SOD, CTA, and GSH-PX). In addition, the POE-mediated stress resistance involved the upregulation of the expression of the sod-3, sod-5, gst-4, ctl-1, ctl-2, daf-16, hsp-16.1, hsp-16.2, and hsf-1 genes and acted dependently on daf-16 and hsf-1 rather than skn-1. Moreover, POE also reduced lipofuscin levels, but did not prolong the lifespan or damage the growth, reproduction and locomotion of C. elegans. Furthermore, POE showed a protective effect against DNA scission in the pBR322 plasmid and lymphocytes. These results suggested that P. oxalate extracts have significant anti-stress and DNA protection potential and could be potential drug candidates in the pharmaceutical field, thus greatly broadening the understanding of the biological effects of the endophytic fungus P. oxalate.

15.
Chem Biodivers ; 19(10): e202200156, 2022 Oct.
Article En | MEDLINE | ID: mdl-36039474

Alsophila spinulosa, as a rare tree fern with potential medicinal value, has attracted extensive attention. Herein, the physicochemical properties, antioxidant and anti-aging activities of polysaccharide from A. spinulosa leaf (ALP) were investigated. ALP was composed of galactose, arabinose, glucose, rhamnose, galacturonic acid, mannose, and fucose. (1→), (1→6), and (1→2) bond types were the primary glycosidic bond in ALP. Surprisingly, ALP displayed the wonderful activity of antioxidant and anti-aging, including excellent scavenging ability against DPPH and ABTS radicals in vitro; prolonging the life span, improving activity of antioxidative enzymes (SOD and CAT), and decreasing the level of ROS, MDA in Caenorhabditis elegans. Meanwhile, ALP promoted DAF-16 to move into the nuclear. Overall, our results illustrated that ALP could be further developed as a functional food ingredient.


Ferns , Food Ingredients , Tracheophyta , Animals , Caenorhabditis elegans , Antioxidants/chemistry , Reactive Oxygen Species/analysis , Fucose/analysis , Galactose , Mannose/analysis , Arabinose/analysis , Rhamnose , Polysaccharides/pharmacology , Polysaccharides/chemistry , Plant Leaves/chemistry , Aging , Superoxide Dismutase , Food Ingredients/analysis , Glucose/analysis
16.
Food Res Int ; 158: 111497, 2022 08.
Article En | MEDLINE | ID: mdl-35840206

The present study aimed to investigate the inhibition mechanism of polyphenols from Phyllanthus emblica Linn. fruit (PEF, family Euphorbiaceous) on acetylcholinesterase (AChE). Interaction assay, enzyme kinetics, spectroscopic methods, and molecular simulations were performed. Results showed that myricetin, quercetin, fisetin, and gallic acid were the most active components in PEF, because of their low docking scores and strong inhibition ability on AChE with IC50 values of 0.1974 ± 0.0047, 0.2589 ± 0.0131, 1.0905 ± 0.0598 and 1.503 ± 0.0728 mM, respectively. Among them, the results of kinetic study showed that myricetin, quercetin, and fisetin reversibly inhibited AChE in a competitive manner, while gallic acid inhibited it through a noncompetition type. The interaction assay implied that a combination of the four polyphenols at the selected concentrations manifested a synergistic inhibition effect on AChE in a mixed inhibition type. Fluorescence and UV-vis spectrophotometry revealed that the active PEF polyphenols could strongly quench the intrinsic fluorescence of AChE via a static quenching mechanism. Circular dichroism spectroscopy analysis indicated that the active PEF polyphenols gave rise to the secondary structure changes of AChE by increasing the content of α-helix and reducing ß-sheet and random coil conformation. The molecular dynamics simulation results validated that all the four docked polyphenol-AChE complexes were relatively stable according to their root-mean-square distance, root-mean-square fluctuations, solvent accessible surface area, radius of gyration values and hydrogen bonds evaluations during the whole simulation process. Overall, our study provides a creative insight into the further utilization of PEF polyphenols as functional components in exploring natural AChE inhibitors.


Acetylcholinesterase , Phyllanthus emblica , Acetylcholinesterase/metabolism , Fruit/metabolism , Gallic Acid , Kinetics , Molecular Docking Simulation , Phyllanthus emblica/metabolism , Polyphenols/pharmacology , Protein Structure, Secondary , Quercetin , Spectrum Analysis
17.
J Exp Bot ; 73(17): 5918-5927, 2022 09 30.
Article En | MEDLINE | ID: mdl-35665805

There are numerous studies on enhancing plant resistance to stress using melatonin, but few studies about its effect on photosynthesis. Herein, we summarized the role of melatonin in photosynthesis. Melatonin regulates chlorophyll synthesis and degradation through the transcription of related genes and hormone signals. It protects photosynthetic proteins and maintains the photosynthetic process through improving the transcription of photosystem genes, activating the antioxidant system, and promoting the xanthophyll cycle. Melatonin potentially regulates plant stomatal movement through CAND2/PMTR1. Finally, it controls the photosynthetic carbon cycle by regulating the metabolism of sugar, the gluconeogenesis pathway, and the degradation and transport of transient starch.


Melatonin , Antioxidants/metabolism , Chlorophyll/metabolism , Melatonin/metabolism , Photosynthesis/physiology , Plants/metabolism , Starch/metabolism , Sugars/metabolism , Xanthophylls/metabolism
18.
Front Nutr ; 9: 911310, 2022.
Article En | MEDLINE | ID: mdl-35757258

The polysaccharides from C. cicadae were extracted by ultrasonically-assisted enzymatic extraction (UAEE). Response surface analysis was used to determine the optimum parameters as follows: addition of enzymes, 0.71%; extraction temperature, 60°C; extraction time, 18 min; liquid-solid ratio, 46:1 (mL/g). The extraction yield of polysaccharide was 3.66 ± 0.87%. A novel polysaccharide fraction (JCH-a1) from C. cicadae was extracted and then purified by cellulose DEAE-32 and Sephadex G-100 anion exchange chromatography. The analysis results showed that the molar ratio of galactose, glucose, and mannose in JCH-a1 cells (60.7 kDa) was 0.89:1:0.39. JCH-a1 with a triple helix contains more α-glycosides and has strong thermal stability. Moreover, JCH-a1 showed strong antioxidant activity and acted as a strong inhibitor of α-glucosidase in vitro. In addition, JCH-a1 can prolong the lifespan of C. elegans. The present study might provide a basis for further study of JCH-a1 as an antioxidant and hypoglycemic food or drug.

19.
J Food Biochem ; 46(9): e14235, 2022 09.
Article En | MEDLINE | ID: mdl-35579221

It has been reported that the aqueous extract from Oxalis corniculate has excellent pharmacological effects, but its polysaccharide as the major ingredient in the aqueous extract has not been reported. When the temperature of 50°C, ultrasonic power of 270 W, time of 25 min, solid to liquid ratio of 30 ml·g-1 , the optimal O. corniculate polysaccharide (OCP) yield was 9.45%. The physicochemical properties indicated that OCP-3, as the major fraction of OCP, was an acidic polysaccharide with 31.5 kDa, and it mainly consisted of arabinose (47.83%), galacturonic acid (17.81%), and galactose (14.25%). In addition, OCP-3 displayed an excellent antioxidant activity in vitro, including scavenging free radical, anti-lipid peroxidation, and protecting plasmid DNA from oxidative damage. Meanwhile, OCP-3 significantly reduced the levels of malondialdehyde and protein carbonyl by significantly increasing the activity of superoxide dismutase, catalase, and glutathione peroxidase, which protected the HEK 293 cell and Caenorhabditis elegans from oxidative damage. All the results suggested that OCP-3 might be the major active ingredient of the aqueous extract from O. corniculate, and OCP-3 might be a potent antioxidant supplement in the food, cosmetics, and medical industries. PRACTICAL APPLICATIONS: Oxalis corniculate is a kind of wild vegetable and ethnomedicine, and it is widely distributed in temperate zones. Unfortunately, its utilization rate is low compared to its yield. Our research suggested that the polysaccharide of OCP-3 from O corniculate might be used as a potent antioxidant supplement in the food, cosmetics, and medical industries.


Antioxidants , Oxalidaceae , Acids , Antioxidants/chemistry , HEK293 Cells , Humans , Lipid Peroxidation , Oxalidaceae/chemistry , Oxalidaceae/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology
20.
Nutrients ; 14(4)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35215512

Phyllanthus emblica L. (PE) is commonly known as a medicine and food homologous plant, which is abundant in natural products polyphenols. In the present study, polyphenols were extracted from PE fruit by response surface method, and the anti-aging ability was determined. PE fruit polyphenols exhibited strong antioxidant capacities in scavenging free radicals, and anti-cholinesterase ability by inhibition of AChE (IC50 0.2186 ± 0.0416 mg/mL) and BuChE (IC50 0.0542 ± 0.0054 mg/mL) in vitro. Moreover, PE fruit polyphenols showed strong protective effect against the aging process in Caenorhabditis elegans model, including increased thermal resistance, extended lifespan by 18.53% (p < 0.05), reduced activity of AChE by 34.71% and BuChE by 45.38% (p < 0.01). This was accompanied by the enhancement in antioxidant enzymes activity of SOD by 30.74% (p < 0.05) and CAT by 8.42% (p > 0.05), while decrease in MDA level by 36.25% (p < 0.05). These properties might be interrelated with the presence of abundant flavonols and phenolic acids identified by UPLC-ESI-QTOF-MS, such as quercetin, myricetin, ellagic, gallic, and chlorogenic acids, together with their glycosides. The remarkable antioxidant and anti-aging potential of PE fruit polyphenols could be implemented in the food and pharmaceutical industry.


Phyllanthus emblica , Antioxidants/pharmacology , Fruit/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology
...