Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Naturwissenschaften ; 108(5): 45, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34581877

Animals highly depend on their sensory organs to detect information about their surrounding environment. Among animal sensory organs, those of insects have a notable ability to detect information despite their small size, which might be, therefore, one of the reasons for the evolutionary success of insects. However, insect sensory organs are seldom fossilized in sediments due to their small size and fragility. A potential solution for this problem is the study of exceptionally well-preserved fossil material from amber. Unfortunately, the resolution of existing non-destructive analysis is insufficient to observe details of these micro sensory organs even with amber preservation. Here, we focus on the analysis of the micro sensory organs of an extinct male cockroach (Huablattula hui Qiu et al., 2019) in Cretaceous amber by combining destructive and non-destructive methods. Compared to extant species inhabiting dark environments, H. hui has relatively large compound eyes, and all the antennal sensilla for detecting multimodal information observed here are fewer or smaller. The characteristics of these sensory organs support the diurnality of the bright habitats of H. hui in contrast to many extant cockroaches. Like extant male mantises, grooved basiconic type sensilla exist abundantly on the antenna of the fossilized specimen. The abundance of grooved basiconic sensilla in mantid males results from using sex pheromones, and therefore, H. hui may have likewise used mantis-like intersexual communication. These lines of evidence suggest that the ecology and behavior of Cretaceous cockroaches were more diverse than those of related extant species.


Cockroaches , Mantodea , Amber , Animals , Fossils , Male , Sensilla
2.
Chem Commun (Camb) ; 57(21): 2609-2612, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33630980

A metal-free and operationally simple strategy for the generation of various α-monofluoroalkyl radicals has been developed. A combination of 1,4-bis(diarylamino)naphthalene photocatalyst and sulfoximine-based fluoroalkylating reagents is the key to success. The protocol can be applied to modular synthesis of ß-monofluoroketones through radical monofluoroalkylation of alkenyl acetates.

3.
Biomol NMR Assign ; 5(2): 207-10, 2011 Oct.
Article En | MEDLINE | ID: mdl-21431884

Zonula occludens-1 (ZO-1) is a scaffolding molecule critical to the formation of intercellular adhesion structures, such as tight junctions (TJs) and adherens junctions (AJs). ZO-1 contains three PDZ domains followed by a GUK domain and a ZU5 domain. The first PDZ of ZO-1 (ZO-1(PDZ1)) serves as a protein-protein interaction module and interacts with the C-termini of almost all claudins to initiate the formation of a belt-like structure on the lateral membranes, thereby promoting TJ formation. It has been recently reported that approximately 15% of all PDZ domains bind phosphoinositides, and ZO-1(PDZ1) is the one of these. Here we report the (15)N, (13)C, and (1)H chemical shift assignments of the first PDZ domain of mouse ZO-1. The resonance assignments obtained in this work may contribute in clarifying the interplay between the two binary interactions, ZO-1(PDZ1)-claudins and ZO-1(PDZ1)-phospholipids, and suggesting a novel regulation mechanism underlying the formation and maintenance of cell-cell adhesion machinery downstream of the phospholipid signaling pathways.


Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , PDZ Domains , Phosphoproteins/chemistry , Animals , Isotopes , Mice , Tight Junctions , Zonula Occludens-1 Protein
4.
Arch Histol Cytol ; 68(4): 243-50, 2005 Dec.
Article En | MEDLINE | ID: mdl-16477144

Lectin histochemistry of Jacalin (Artocarpus integrifolia) and peanut agglutinin (PNA), specific lectins for galactosyl (beta-1, 3) N-acetylgalactosamine (galactosyl (beta-1, 3) GalNAc), was applied to the gustatory epithelium of the adult rat. In the ordinary lingual epithelium, Jacalin and PNA labeled the cell membrane from the basal to granular cell layer. They also bound membranes of rounded-cells at the basal portion of taste buds, but the number of PNA labeled cells was smaller than that of Jacalin labeled cells. There was no apparent difference in the binding patterns of Jacalin and PNA among the taste buds of the lingual papillae and those of the palatal epithelium. Occasionally, a few spindle-shaped cells were labeled with Jacalin, but not with PNA. Double labeling of Jacalin and alpha-gustducin, a specific marker for type II cells, revealed that Jacalin-labeled spindle-shaped taste cells were immunonegative for alpha-gustducin. Spindle-shaped cells expressing protein gene product 9.5 (PGP 9.5) immunoreactivity lacked Jacalin labeling. During the development of taste buds in circumvallate papillae, the binding pattern of Jacalin became almost identical from postnatal day 5. The present results indicate that rounded cells at the basal portion of the taste buds cells (type IV cells) bind to Jacalin and PNA, and these lectins are specific markers for type IV cells of the rat taste cells.


Peanut Agglutinin/metabolism , Plant Lectins/metabolism , Taste Buds/cytology , Taste Buds/metabolism , Animals , Artocarpus , Biomarkers/metabolism , Cell Separation/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Transducin/metabolism , Ubiquitin Thiolesterase/metabolism
5.
Arch Histol Cytol ; 67(3): 187-93, 2004 Sep.
Article En | MEDLINE | ID: mdl-15570884

To understand the development of the gustatory structures necessitates a reliable marker for both immature and mature taste buds. It has been reported that the intragemmal cells within the taste buds of adult rats were bound to Ulex europaeus agglutinin-I (UEA-I), a specific lectin for alpha-linked fucose, but it has not been determined whether immature taste buds, i.e. taste buds without an apparent taste pore, are labeled with UEA-I. The present study was conducted to examine the UEA-I binding pattern during the development of the rat gustatory epithelium. In adult animals, UEA-I bound to the membrane of taste buds in all examined regions of the gustatory epithelium. Within the individual taste buds, UEA-I labeled almost all intragemmal cells. The binding of UEA-I was occasionally detected below the keratinized layer of the trench wall epithelium but could not be found in the lingual epithelium of the adult animal. During the development of circumvallate papilla, some cells within the immature taste buds were also labeled with UEA-I. The developmental changes in the UEA-I binding pattern in fungiform papillae were almost identical to those in the circumvallate papilla: both immature and mature taste buds were labeled with UEA-I. The present results indicate that UEA-I is a specific lectin for the intragemmal cells of both immature and mature taste buds and, thus, UEA-I can be used as a reliable marker for all taste buds in the rat.


Epithelium/anatomy & histology , Plant Lectins/metabolism , Taste Buds/anatomy & histology , Tongue/anatomy & histology , Animals , Cell Membrane/metabolism , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/metabolism , Epithelium/embryology , Epithelium/metabolism , Immunohistochemistry , Rats , Rats, Sprague-Dawley , Taste Buds/embryology , Taste Buds/metabolism , Tongue/embryology , Tongue/metabolism , Ulex/chemistry
...