Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Dent Res ; 94(2): 337-43, 2015 Feb.
Article En | MEDLINE | ID: mdl-25503611

Synovial fluid of the joint decreases friction between the cartilage surfaces and reduces cartilage wear during articulation. Characteristic changes of synovial fluid have been shown in patients with osteoarthritis (OA) in the temporomandibular joint (TMJ). OA is generally considered to be induced by excessive mechanical stress. However, whether the changes in synovial fluid precede the mechanical overloading or vice versa remains unclear. In the present study, our purpose was to examine if the breakdown of joint lubrication affects the frictional properties of mandibular condylar cartilage and leads to subsequent degenerative changes in TMJ. We measured the frictional coefficient in porcine TMJ by a pendulum device after digestion with hyaluronidase (HAase) or trypsin. Gene expressions of interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), matrix metalloproteinases (MMPs), type II collagen, and histology were examined after prolonged cyclic loading by an active pendulum system. The results showed that the frictional coefficient increased significantly after HAase (35%) or trypsin (74%) treatment. Gene expression of IL-1ß, COX-2, and MMPs-1, -3, and -9 increased significantly in enzyme-treated TMJs after cyclic loading. The increase in the trypsin-treated group was greater than that in the HAase-treated group. Type II collagen expression was reduced in both enzyme-treated groups. Histology revealed surface fibrillation and increased MMP-1 in the trypsin-treated group, as well as increased IL-1ß in both enzyme-treated groups after cyclic loading. The findings demonstrated that the compromised lubrication in TMJ is associated with altered frictional properties and surface wear of condylar cartilage, accompanied by release of pro-inflammatory and matrix degradation mediators under mechanical loading.


Hyaluronoglucosaminidase/pharmacology , Temporomandibular Joint/drug effects , Trypsin/pharmacology , Animals , Biomechanical Phenomena , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Collagen Type II/analysis , Collagen Type II/ultrastructure , Cyclooxygenase 2/analysis , Friction , Interleukin-1beta/analysis , Lubrication , Mandibular Condyle/drug effects , Mandibular Condyle/pathology , Matrix Metalloproteinase 1/analysis , Matrix Metalloproteinase 3/analysis , Matrix Metalloproteinase 9/analysis , Osteoarthritis/pathology , Stress, Mechanical , Swine , Synovial Fluid/physiology , Temporomandibular Joint/pathology , Temporomandibular Joint/physiopathology , Temporomandibular Joint Disorders/pathology
2.
Osteoarthritis Cartilage ; 22(6): 845-51, 2014 Jun.
Article En | MEDLINE | ID: mdl-24721459

OBJECTIVE: Excessive mechanical stress is considered a major cause of temporomandibular joint osteoarthritis (TMJ-OA). High magnitude cyclic tensile strain (CTS) up-regulates pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in chondrocytes, while selective cyclooxygenase (COX)-2 inhibition has been shown to be beneficial to cytokine-induced cartilage damage. However, the effect of selective COX-2 inhibitors on mechanically stimulated chondrocytes remains unclear. This study evaluated the effect of celecoxib, a selective COX-2 inhibitor, on extracellular matrix (ECM) metabolism of mandibular condylar chondrocytes under CTS. METHODS: Porcine mandibular chondrocytes were subjected to CTS of 0.5 Hz, 10% elongation with celecoxib for 24 h. The gene expressions of COX-2, MMPs, aggrecanase (ADAMTS), type II collagen and aggrecan were examined by real-time PCR. Also, prostaglandin E2 (PGE2) concentrations were determined using enzyme immunoassay kit. The levels of MMP and transcription factor NF-κB were measured by western blot while MMP activity was determined by casein zymography. RESULTS: The presence of celecoxib normalized the release of PGE2 and diminished the CTS-induced COX-2, MMP-1, MMP-3, MMP-9 and ADAMTS-5 gene expressions while recovered the downregulated type II collagen and aggrecan gene expressions. Concurrently, celecoxib showed inhibition of NF-κB and suppression of MMP production and activity. CONCLUSIONS: Celecoxib exerts protective effects on mandibular condylar chondrocytes under CTS stimulation by diminishing degradation and restoring synthesis of ECM.


Chondrocytes/drug effects , Extracellular Matrix/metabolism , Mandibular Condyle/metabolism , Matrix Metalloproteinases/metabolism , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Blotting, Western , Celecoxib , Cells, Cultured , Chondrocytes/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Extracellular Matrix/drug effects , Mandibular Condyle/cytology , Matrix Metalloproteinases/drug effects , Models, Animal , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Stress, Mechanical , Swine , Temporomandibular Joint Disorders/physiopathology
3.
Cells Tissues Organs ; 196(5): 411-9, 2012.
Article En | MEDLINE | ID: mdl-22653431

Amelogenins are the major constituent of developing extracellular enamel matrix proteins and are understood to have an exclusively epithelial origin. Recent studies have demonstrated that amelogenins can be detected in other tissues, including bone marrow mesenchymal stem cells (MSCs), but the role of amelogenins in MSCs remains unclear. The purpose of this study was to examine the effect of recombinant human full-length amelogenin (rh174) on the osteogenic differentiation of cultured human MSCs. MSCs isolated from human bone marrow were cultured in osteoblastic differentiation medium with 0, 10 or 100 ng/ml rh174. The mRNA levels of bone markers were examined by real-time PCR analysis. Alkaline phosphatase (ALP) activity and calcium concentration were determined. Mineralization was evaluated by alizarin red staining. The mRNA levels of ALP, type I collagen, osteopontin and bone sialoprotein in the MSCs treated with rh174 became significantly higher than those in non-treated controls. Treatment of MSCs with rh174 also enhanced ALP activity and calcium concentration, resulting in enhanced mineralization, as denoted by high intensity of alizarin red staining. In conclusion, the present study showed that rh174 enhances the mineralization accompanied by the upregulation of bone markers in human bone marrow MSCs during osteogenic differentiation, suggesting a certain role of amelogenin in the modulation of osteogenic differentiation of MSCs.


Amelogenin/pharmacology , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Humans , Mesenchymal Stem Cells/drug effects , Real-Time Polymerase Chain Reaction
4.
Ann Biomed Eng ; 38(4): 1618-25, 2010 Apr.
Article En | MEDLINE | ID: mdl-20099033

Hyaluronan (HA) plays a crucial role in the lubricating and buffering properties of synovial fluid. The purpose of this study was to examine the effects of interleukin (IL)-1beta on HA degradation in cultured synovial membrane cells. The rabbit synovial membrane cell line HIG-82 was cultured with and without IL-1beta. The amounts of HA of varying molecular weights in the medium were analyzed using high-performance liquid chromatography, the mRNA levels of HA synthase (HAS) and hyaluronidase (HYAL) were analyzed by means of real-time PCR, and HYAL activity was analyzed by HA zymography. The amounts of HA with a molecular weight lower than 300 kDa, and between 300 and 1900 kDa, in the culture medium of HIG-82 cells were significantly higher in the presence of IL-1beta. However, the amount of HA with a molecular weight greater than 1900 kDa was significantly lower in the presence of IL-1beta. Both HAS2 and HAS3 mRNA levels were upregulated by treatment with IL-1beta. So, too, were the levels of HYAL1 and HYAL2 mRNA, which resulted in enhanced HYAL activity. However, HYAL activity was inhibited by transfection of HYAL2-siRNA. Our results suggest that IL-1beta is a crucial factor in the fragmentation of HA in inflammatory joints.


Hyaluronic Acid/metabolism , Interleukin-1/administration & dosage , Signal Transduction/physiology , Synovial Membrane/cytology , Synovial Membrane/physiology , Animals , Cell Line , Dose-Response Relationship, Drug , Hyaluronic Acid/chemistry , Rabbits , Signal Transduction/drug effects , Synovial Membrane/drug effects
5.
J Biomed Mater Res A ; 92(2): 801-5, 2010 Feb.
Article En | MEDLINE | ID: mdl-19280634

Superficial zone protein (SZP) has been demonstrated to contribute to the boundary lubrication in synovial joints. This study was designed to clarify the modulation of SZP expression by mechanical stress in articular chondrocytes. Cyclic tensile strains of 7 and 21% cell elongation were applied to cultured chondrocytes obtained from porcine mandibular condylar cartilage. The mRNA levels of SZP, IL-1 beta, and TGF-beta1 were examined by a quantitative real-time PCR analysis. Protein level of SZP was examined by Western blotting. The SZP mRNA level was significantly upregulated after 12, 24, and 48 h by 7% elongation. Although SZP mRNA level was upregulated by 21% elongation after 12 h, it decreased to a lower level than the control after 48 h. The TGF-beta1 mRNA level exhibited an almost similar change to SZP. The IL-1 beta mRNA level was not changed markedly by 7% elongation. However, the IL-1 beta mRNA level was significantly increased by a 12-h application of 21% elongation. Western blot analysis revealed that the SZP expression was increased by 7% elongation, but decreased remarkably by 21% elongation. It is suggested from these findings that the SZP expression level in the chondrocytes is enhanced by optimal mechanical stimuli, but inhibited by excessive loading partly affected by TGF-beta1 and IL-1 beta, leading to the deterioration of joint lubrication.


Chondrocytes/metabolism , Chondrocytes/physiology , Glycoproteins/biosynthesis , Animals , Blotting, Western , Cells, Cultured , Female , Interleukin-1beta/biosynthesis , Physical Stimulation , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Swine , Temporomandibular Joint/cytology , Tensile Strength , Transforming Growth Factor beta/biosynthesis
6.
Arch Oral Biol ; 53(5): 478-87, 2008 May.
Article En | MEDLINE | ID: mdl-18242579

During endochondral ossification, the production of hyaluronan (HA) is strictly and selectively regulated by chondrocytes, with a temporal peak at the hypertrophic stage. This study was conducted to clarify the effects of HA on expression and activity of runt-related gene 2 (Runx2), a potent transcription factor for chondrocyte differentiation in hypertrophic chondrocytes. Immature chondrocytes from an ATDC5 cell line were cultured and differentiated in DMEM/Ham's F12 with pre-defined supplements. Using real-time PCR, the gene expressions of type II collagen, MMP-13, HAS2, and Runx2 in cultured chondrocytes were analysed from days 0 to 18 of cell differentiation. The activity and expression of Runx2 in hypertrophic chondrocytes were analysed after the treatment with HA oligosaccharide (HAoligo) using AML-3/Runx2 binding, real-time PCR and Western blot analysis. The effects of pre-incubation of anti-CD44 antibody on Runx2 expression were also examined. Expression of type X collagen and Runx2 mRNAs reached a maximum at the terminal differentiation of chondrocytes. The activity and expression of Runx2 was significantly inhibited in hypertrophic chondrocytes treated with HAoligo compared to the untreated controls. High molecular weight-HA did not affect the expression or activity of Runx2. The expression of Runx2 mRNA was significantly decreased in hypertrophic chondrocytes treated with anti-CD44 antibody. These results suggest that HAoligo may affect the terminal differentiation of chondrocytes during the endochondral ossification by inhibiting the expression and activity of Runx2.


Cell Differentiation/drug effects , Chondrocytes/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Hyaluronic Acid/pharmacology , Animals , Blotting, Western , Cell Differentiation/physiology , Cell Line, Tumor/drug effects , Cell Line, Tumor/physiology , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Collagen Type X/genetics , Collagen Type X/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Gene Expression , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hyaluronan Receptors/metabolism , Hyaluronan Synthases , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , RNA/metabolism , RNA, Mitochondrial , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Osteoarthritis Cartilage ; 14(8): 807-13, 2006 Aug.
Article En | MEDLINE | ID: mdl-16563813

OBJECTIVE: Superficial zone protein (SZP) has been shown to function in the boundary lubrication of articular cartilages of the extremities. However, the expression of SZP has not been clarified in mandibular cartilage which is a tissue that includes a thick fibrous layer on the surface. This study was conducted to clarify the distribution of SZP on the mandibular condyle and the regulatory effects of humoral factors on the expression in both explants and fibroblasts derived from mandibular condyle. METHODS: The distribution of SZP was determined in bovine mandibular condyle cartilage, and the effects of interleukin-1beta (IL-1beta) and transforming growth factor-beta (TGF-beta) on SZP expression were examined in condyle explants and fibroblasts derived from the fibrous zone of condyle cartilage. RESULTS: SZP was highly distributed in the superficial zone of intact condyle cartilage. The SZP expression was up-regulated by TGF-beta in both explants and cultured fibroblasts, whereas the expression was slightly down-regulated by IL-1beta. A significant increase in accumulation of SZP protein was also observed in the culture medium of the fibroblasts treated with TGF-beta. CONCLUSIONS: These results suggest that SZP plays an important role in boundary lubrication of mandible condylar cartilage, is synthesized locally within the condyle itself, and exhibits differential regulation by cell mediators relevant to mandibular condyle repairing and pathologies.


Cartilage, Articular/metabolism , Mandibular Condyle , Proteoglycans/analysis , Animals , Cattle , Enzyme-Linked Immunosorbent Assay/methods , Immunohistochemistry/methods , Interleukin-1beta/pharmacology , Male , Proteoglycans/genetics , Reverse Transcriptase Polymerase Chain Reaction , Temporomandibular Joint , Transforming Growth Factor beta/pharmacology
...