Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 15: 628662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867948

RESUMEN

Social behaviors are mediated by the activity of highly complex neuronal networks, the function of which is shaped by their transcriptomic and proteomic content. Contemporary advances in neurogenetics, genomics, and tools for automated behavior analysis make it possible to functionally connect the transcriptome profile of candidate neurons to their role in regulating behavior. In this study we used Drosophila melanogaster to explore the molecular signature of neurons expressing receptor for neuropeptide F (NPF), the fly homolog of neuropeptide Y (NPY). By comparing the transcription profile of NPFR neurons to those of nine other populations of neurons, we discovered that NPFR neurons exhibit a unique transcriptome, enriched with receptors for various neuropeptides and neuromodulators, as well as with genes known to regulate behavioral processes, such as learning and memory. By manipulating RNA editing and protein ubiquitination programs specifically in NPFR neurons, we demonstrate that the proper expression of their unique transcriptome and proteome is required to suppress male courtship and certain features of social group interaction. Our results highlight the importance of transcriptome and proteome diversity in the regulation of complex behaviors and pave the path for future dissection of the spatiotemporal regulation of genes within highly complex tissues, such as the brain.

2.
Commun Biol ; 3(1): 696, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239721

RESUMEN

Gene transcription is regulated by distant regulatory elements via combinatorial binding of transcription factors. It is increasingly recognized that alterations in chromatin state and transcription factor binding in these distant regulatory elements may have key roles in cancer development. Here we focused on the first stages of oncogene-induced carcinogenic transformation, and characterized the regulatory network underlying transcriptional changes associated with this process. Using Hi-C data, we observe spatial coupling between differentially expressed genes and their differentially accessible regulatory elements and reveal two candidate transcription factors, p53 and CTCF, as determinants of transcriptional alterations at the early stages of oncogenic HRas-induced transformation in human mammary epithelial cells. Strikingly, the malignant transcriptional reprograming is promoted by redistribution of chromatin binding of these factors without major variation in their expression level. Our results demonstrate that alterations in the regulatory landscape have a major role in driving oncogene-induced transcriptional reprogramming.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Unión a CCCTC/genética , Línea Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Femenino , Genoma Humano , Humanos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética
3.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235482

RESUMEN

The integration of T-DNA in plant genomes is widely used for basic research and agriculture. The high heterogeneity in the number of integration events per genome, their configuration, and their impact on genome integrity highlight the critical need to detect the genomic locations of T-DNA insertions and their associated chromosomal rearrangements, and the great challenge in doing so. Here, we present 4SEE, a circular chromosome conformation capture (4C)-based method for robust, rapid, and cost-efficient detection of the entire scope of T-DNA locations. Moreover, by measuring the chromosomal architecture of the plant genome flanking the T-DNA insertions, 4SEE outlines their associated complex chromosomal aberrations. Applying 4SEE to a collection of confirmed T-DNA lines revealed previously unmapped T-DNA insertions and chromosomal rearrangements such as inversions and translocations. Uncovering such events in a feasible, robust, and cost-effective manner by 4SEE in any plant of interest has implications for accurate annotation and phenotypic characterization of T-DNA insertion mutants and transgene expression in basic science applications as well as for plant biotechnology.


Asunto(s)
Arabidopsis/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genoma de Planta , Genómica , Mutación , Plantas Modificadas Genéticamente/genética , Translocación Genética
4.
PLoS Genet ; 15(11): e1008397, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31693674

RESUMEN

In animals, circadian rhythms are driven by oscillations in transcription, translation, and proteasomal degradation of highly conserved genes, resulting in diel cycles in the expression of numerous clock-regulated genes. Transcription is largely regulated through the binding of transcription factors to cis-regulatory elements within accessible regions of the chromatin. Chromatin remodeling is linked to circadian regulation in mammals, but it is unknown whether cycles in chromatin accessibility are a general feature of clock-regulated genes throughout evolution. To assess this, we applied an ATAC-seq approach using Nematostella vectensis, grown under two separate light regimes (light:dark (LD) and constant darkness (DD)). Based on previously identified N. vectensis circadian genes, our results show the coupling of chromatin accessibility and circadian transcription rhythmicity under LD conditions. Out of 180 known circadian genes, we were able to list 139 gene promoters that were highly accessible compared to common promoters. Furthermore, under LD conditions, we identified 259 active enhancers as opposed to 333 active enhancers under DD conditions, with 171 enhancers shared between the two treatments. The development of a highly reproducible ATAC-seq protocol integrated with published RNA-seq and ChIP-seq databases revealed the enrichment of transcription factor binding sites (such as C/EBP, homeobox, and MYB), which have not been previously associated with circadian signaling in cnidarians. These results provide new insight into the regulation of cnidarian circadian machinery. Broadly speaking, this supports the notion that the association between chromatin remodeling and circadian regulation arose early in animal evolution as reflected in this non-bilaterian lineage.


Asunto(s)
Ritmo Circadiano/genética , Cnidarios/genética , Elementos de Facilitación Genéticos/genética , Transcripción Genética , Animales , Cromatina/genética , Relojes Circadianos/genética , Cnidarios/crecimiento & desarrollo , Oscuridad , Regulación del Desarrollo de la Expresión Génica/genética , Biblioteca Genómica , Fotoperiodo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
5.
Plant Methods ; 14: 113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30598689

RESUMEN

BACKGROUND: There is a growing interest in the role of chromatin in acquiring and maintaining cell identity. Despite the ever-growing availability of genome-wide gene expression data, understanding how transcription programs are established and regulated to define cell identity remains a puzzle. An important mechanism of gene regulation is the binding of transcription factors (TFs) to specific DNA sequence motifs across the genome. However, these sequences are hindered by the packaging of DNA to chromatin. Thus, the accessibility of these loci for TF binding is highly regulated and determines where and when TFs bind. We present a workflow for measuring chromatin accessibility in Arabidopsis thaliana and define organ-specific regulatory sites and binding motifs of TFs at these sites. RESULTS: We coupled the recently described isolation of nuclei tagged in specific cell types (INTACT) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) as a genome-wide strategy to uncover accessible regulatory sites in Arabidopsis based on their accessibility to nuclease digestion. By applying this pipeline in Arabidopsis roots, we revealed 41,419 accessible sites, of which approximately half are found in gene promoters and contain the H3K4me3 active histone mark. The root-unique accessible sites from this group are enriched for root processes. Interestingly, most of the root-unique accessible sites are found in nongenic regions but are correlated with root-specific expression of distant genes. Importantly, these gene-distant sites are enriched for binding motifs of TFs important for root development as well as motifs for TFs that may play a role as novel transcriptional regulators in roots, suggesting that these accessible loci are functional novel gene-distant regulatory elements. CONCLUSIONS: By coupling INTACT with ATAC-seq methods, we present a feasible pipeline to profile accessible chromatin in plants. We also introduce a rapid measure of the experiment quality. We find that chromatin accessibility at promoter regions is strongly associated with transcription and active histone marks. However, root-specific chromatin accessibility is primarily found at intergenic regions, suggesting their predominance in defining organ identity possibly via long-range chromatin interactions. This workflow can be rapidly applied to study the regulatory landscape in other cell types, plant species and conditions.

6.
J Vis Exp ; (129)2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29155775

RESUMEN

Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) is a method used for the identification of open (accessible) regions of chromatin. These regions represent regulatory DNA elements (e.g., promoters, enhancers, locus control regions, insulators) to which transcription factors bind. Mapping the accessible chromatin landscape is a powerful approach for uncovering active regulatory elements across the genome. This information serves as an unbiased approach for discovering the network of relevant transcription factors and mechanisms of chromatin structure that govern gene expression programs. ATAC-seq is a robust and sensitive alternative to DNase I hypersensitivity analysis coupled with next-generation sequencing (DNase-seq) and formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) for genome-wide analysis of chromatin accessibility and to the sequencing of micrococcal nuclease-sensitive sites (MNase-seq) to determine nucleosome positioning. We present a detailed ATAC-seq protocol optimized for human primary immune cells i.e. CD4+ lymphocytes (T helper 1 (Th1) and Th2 cells). This comprehensive protocol begins with cell harvest, then describes the molecular procedure of chromatin tagmentation, sample preparation for next-generation sequencing, and also includes methods and considerations for the computational analyses used to interpret the results. Moreover, to save time and money, we introduced quality control measures to assess the ATAC-seq library prior to sequencing. Importantly, the principles presented in this protocol allow its adaptation to other human immune and non-immune primary cells and cell lines. These guidelines will also be useful for laboratories which are not proficient with next-generation sequencing methods.


Asunto(s)
Cromatina/metabolismo , Mapeo Cromosómico/métodos , ADN/genética , Análisis de Secuencia de ADN/métodos , Linfocitos T/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...