Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(26): 5441-5446, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900922

RESUMEN

A new reaction mechanism for the construction of dioxabicyclo[4.2.1]nonanone skeletons via a cation cascade has been proposed and examined by DFT and ab initio computations. This mechanism features the following steps: (1) intramolecular Friedel-Crafts-type cyclization with a methyl oxocarbenium cation formed by carboxylate disconnection, (2) electron-rich aromatic ring assisted methoxide loss followed by lactone formation, and (3) stepwise dyotropic rearrangement resulting in skeletal isomerization from a dioxabicyclo[3.2.2]nonanone to the dioxabicyclo[4.2.1]nonanone product observed experimentally. The high regioselectivity and driving force for the overall rearrangement were rationalized, and Lewis and Brønsted acid mediated reactivities were compared.

2.
J Org Chem ; 89(13): 9187-9197, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38904985

RESUMEN

Selective functionalization of the indole-C3-C bond with aromatic/heteroaromatic 1,2-diketones has been uncovered for the first time. Cobalt catalyst was found to be an effective catalyst for this unusual transformation. This ipso-C-C bond functionalization occurred in the presence of easily available weakly coordinating groups such as ketone and ester. One of the salient features of this methodology is the in situ generation of water from hexafluoro-2-propanol which acts as a reactant for the removal of the pivaloyl/ester group in a deacylative manner. The plausible mechanism has been supported by DFT calculations. Moreover, photophysical studies show the potential utility of indole-C3-acyloin and indolo-fused carbazole, which could be used in photovoltaic and optoelectronic application.

3.
Beilstein J Org Chem ; 20: 1320-1326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887579

RESUMEN

Eunicellane diterpenoids are a unique family of natural products containing a foundational 6/10-bicyclic framework and can be divided into two main classes, cis and trans, based on the configurations of their ring fusion at C1 and C10. Previous studies on two bacterial diterpene synthases, Bnd4 and AlbS, revealed that these enzymes form cis- and trans-eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their intrinsic properties, which result in protonation-initiated cyclization, Cope rearrangement, and atropisomerism. Finally, we exploited the reactivity of the trans-eunicellane skeleton to generate a series of 6/6/6 gersemiane-type diterpenes via electrophilic cyclization.

4.
Acc Chem Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920276

RESUMEN

ConspectusRh2L4 catalysts have risen in popularity in the world of organic synthesis, being used to accomplish a variety of reactions, including C-H insertion and cyclopropanation, and often doing so with high levels of stereocontrol. While the mechanisms and origins of selectivity for such reactions have been examined with computational quantum chemistry for decades, only recently have detailed pictures of the dynamic behavior of reacting Rh2L4-complexed molecules become accessible. Our computational studies on Rh2L4 catalyzed reactions are described here, with a focus on C-H insertion reactions of Rh2L4-carbenes. Several issues complicate the modeling of these reactions, each providing an opportunity for greater understanding and each revealing issues that should be incorporated into future rational design efforts. First, the fundamental mechanism of C-H insertion is discussed. While early quantum chemical studies pointed to transition structures with 3-center [C-H-C] substructures and asynchronous hydride transfer/C-C bond formation, recent examples of reactions with particularly flat potential energy surfaces and even discrete zwitterionic intermediates have been found. These reactions are associated with systems bearing π-donating groups at the site of hydride transfer, allowing for an intermediate with a carbocation substructure at that site to be selectively stabilized. Second, the possible importance of solvent coordination at the Rh atom distal to the carbene is discussed. While effects on reactivity and selectivity were found to be small, they turn out not to be negligible in some cases. Third, it is shown that, in contrast to many other transition metal promoted reactions, many Rh2L4 catalyzed reactions likely involve dissociation of the Rh2L4 catalyst before key chemical steps leading to products. When to expect dissociation is associated with specific features of substrates and the product-forming reactions in question. Often, dissociation precedes transition structures for pericyclic reactions that involve electrons that would otherwise bind to Rh2L4. Finally, the importance of nonstatistical dynamic effects, characterized through ab initio molecular dynamics studies, in some Rh2L4 catalyzed reactions is discussed. These are reactions where transition structures are shown to be followed by flat regions, very shallow minima, and/or pathways that bifurcate, all allowing for trajectories from a single transition state to form multiple different products. The likelihood of encountering such a situation is shown to be associated again with the likelihood of formation of zwitterionic structures along reaction paths, but ones for which pathways to multiple products are expected to be associated with very low or no barriers. The connection between these features and reduced yields of desired products are highlighted, as are the means by which some Rh2L4 catalysts modulate dynamic behavior to produce particular products in high yield.

5.
Methods Enzymol ; 699: 231-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942505

RESUMEN

Terpenes are a diverse class of natural products which have long been sought after for their chemical properties as medicine, perfumes, and for food flavoring. Computational docking studies of terpene mechanisms have been a challenge due to the lack of strong directing groups which many docking programs rely on. In this chapter, we dive into our computational method Terdockin (Terpene-Docking) as a successful methodology in modeling terpene synthase mechanisms. This method could also be used as inspiration for any multi-ligand docking project.


Asunto(s)
Transferasas Alquil y Aril , Dominio Catalítico , Simulación del Acoplamiento Molecular , Terpenos , Simulación del Acoplamiento Molecular/métodos , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Terpenos/química , Terpenos/metabolismo , Ligandos
6.
Angew Chem Int Ed Engl ; : e202406095, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709849

RESUMEN

Recently, Huang and co-workers reported a catalytic reaction that utilizes H2 as the sole reductant for a C-C coupling of allyl groups with yields up to 96 %. Here we use computational quantum chemistry to identify several key features of this reaction that provide clarity on how it proceeds. We propose the involvement of a Pd-Pd bound dimer precatalyst, demonstrate the importance of ligand π-π interactions and counterions, and identify a new, energetically viable, mechanism involving two dimerized, outer-sphere reductive elimination transition structures that determine both the rate and selectivity. Although we rule out the previously proposed transmetalation step on energetic grounds, we show it to have an unusual aromatic transition structure in which two Pd atoms support rearranging electrons. The prevalence of potential metal-supported pericyclic reactions in this system suggests that one should consider such processes regularly, but the results of our calculations also indicate that one should do so with caution.

7.
Org Lett ; 26(22): 4606-4609, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38809009

RESUMEN

Contributions from quantum mechanical tunneling to the rates of several radical coupling reactions between carbon sp2 centers used as key steps in natural product total syntheses were computed using density functional theory. Contributions ranging from ∼15-52% from tunneling were predicted at room temperature, thereby indicating that tunneling plays an important role in the rates of these reactions and should perhaps be considered when designing complex synthetic schemes.

8.
J Am Chem Soc ; 146(20): 13983-13999, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38736283

RESUMEN

The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.

9.
Chempluschem ; 89(6): e202300756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412020

RESUMEN

Investigating the reactivity of small nucleophilic scaffolds is a strategic approach for the design of new catalysts aiming at effective detoxification processes of organophosphorus compounds. The drug methimazole (MMZ) is an interesting candidate featuring two non-equivalent nucleophilic centers. Herein, phosphoryl transfer reactions mediated by MMZ were assessed by means of spectrophotometric kinetic studies, mass spectrometry (MS) analyses, and density functional theory (DFT) calculations using the multi-electrophilic compound O,O-diethyl 2,4-dinitrophenyl phosphate (DEDNPP). MMZ anion acts primarily as an S-nucleophile, exhibiting a nucleophilic activity comparable to that of certain oximes featuring alpha-effect. Selective nucleophilic aromatic substitution was observed, consistent with the DFT prediction of a low energy barrier. Overall, the results bring important advances regarding the mechanistic understanding of nucleophilic dephosphorylation reactions, which comprises a strategic tool for neutralizing toxic organophosphates, hence promoting chemical security.

10.
J Am Chem Soc ; 146(10): 7039-7051, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38418944

RESUMEN

A special type of C-H functionalization can be achieved through C-H insertion combined with Cope rearrangement (CHCR) in the presence of dirhodium catalysts. This type of reaction was studied using density functional theory and ab initio molecular dynamics simulations, the results of which pointed to the dynamic origins of low yields observed in some experiments. These studies not only reveal intimate details of the complex reaction network underpinning CHCR reactions but also further cement the generality of the importance of nonstatistical dynamic effects in controlling Rh2L4-promoted reactions.

11.
Nature ; 625(7994): 287-292, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200298

RESUMEN

Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.

12.
Nat Chem ; 16(4): 615-623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216753

RESUMEN

Revealing the origins of kinetic selectivity is one of the premier tasks of applied theoretical organic chemistry, and for many reactions, doing so involves comparing competing transition states. For some reactions, however, a single transition state leads directly to multiple products, in which case non-statistical dynamic effects influence selectivity control. The selectivity of photochemical reactions-where crossing between excited-state and ground-state surfaces occurs near ground-state transition structures that interconvert competing products-also should be controlled by the momentum of the reacting molecules as they return to the ground state in addition to the shape of the potential energy surfaces involved. Now, using machine-learning-assisted non-adiabatic molecular dynamics and multiconfiguration pair-density functional theory, these factors are examined for a classic photochemical reaction-the deazetization of 2,3-diazabicyclo[2.2.2]oct-2-ene-for which we demonstrate that momentum dominates the selectivity for hexadiene versus [2.2.2] bicyclohexane products.

13.
Angew Chem Int Ed Engl ; 63(19): e202319930, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38237059

RESUMEN

The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.

14.
New Phytol ; 241(2): 764-778, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37904576

RESUMEN

Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic ß-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis ß-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.


Asunto(s)
Chenopodium quinoa , Transferasas Intramoleculares , Triterpenos , Chenopodium quinoa/metabolismo , Triterpenos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
15.
Angew Chem Int Ed Engl ; 63(4): e202317348, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38032339

RESUMEN

Herein, we describe our synthetic efforts toward the pupukeanane natural products, in which we have completed the first enantiospecific route to 2-isocyanoallopupukeanane in 10 steps (formal synthesis), enabled by a key Pd-mediated cyclization cascade. This subsequently facilitated an unprecedented bio-inspired "contra-biosynthetic" rearrangement, providing divergent access to 9-isocyanopupukeanane in 15 steps (formal synthesis). Computational studies provide insight into the nature of this rearrangement.

18.
Angew Chem Int Ed Engl ; 62(49): e202315108, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37860947

RESUMEN

Nitrogen heterocycles play a vital role in pharmaceuticals and natural products, with the six-membered aromatic and aliphatic architectures being commonly used. While synthetic methods for aromatic N-heterocycles are well-established, the synthesis of their aliphatic functionalized analogues, particularly piperidine derivatives, poses a significant challenge. In that regard, we propose a stepwise dearomative functionalization reaction for the construction of highly decorated piperidine derivatives with diverse functional handles. We also discuss challenges related to site-selectivity, regio- and diastereoselectivity, and provide insights into the reaction mechanism through mechanistic studies and density functional theory computations.

19.
JACS Au ; 3(10): 2883-2893, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37885570

RESUMEN

Monoterpene alkaloids encompass distinct chemical diversity and wide-ranging bioactivity. Their compact complexity has made them popular as synthetic targets and has inspired many distinct strategies and tactics in the field of heterocyclic chemistry. This article documents the evolution of a synthetic program aimed at accessing the unusual sulfonamide-containing natural product altemicidin, which was generally believed to be a monoterpene alkaloid throughout our entire synthetic investigations but has recently been found to originate through an unexpected and quite disparate biosynthetic pathway. By leveraging a pyridine dearomatization/cycloaddition strategy, we developed a concise pathway to the 5,6-fused bicyclic azaindane core and, after significant experimentation, an ultimate synthesis of altemicidin itself. Tactics to productively manipulate the multiple functional groups present on this highly polar scaffold proved challenging but were eventually realized via several carefully orchestrated and chemoselective transformations-investments that paid dividends in the form of significantly shorter chemical synthesis. Surprisingly, the bond-forming logic between our presumed abiotic synthetic strategy to this alkaloid class and its subsequently identified biosynthetic pathway is eerily similar.

20.
Angew Chem Int Ed Engl ; 62(45): e202312490, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37735947

RESUMEN

Terpene cyclization, one of the most complex chemical reactions in nature, is generally catalyzed by two classes of terpene cyclases (TCs). Cytochrome P450s that act as unexpected TC-like enzymes are known but are very rare. In this study, we genome-mined a cryptic bacterial terpenoid gene cluster, named ari, from the thermophilic actinomycete strain Amycolatopsis arida. By employing a heterologous production system, we isolated and characterized three highly oxidized eunicellane derived diterpenoids, aridacins A-C (1-3), that possess a 6/7/5-fused tricyclic scaffold. In vivo and in vitro experiments systematically established a noncanonical two-step biosynthetic pathway for diterpene skeleton formation. First, a class I TC (AriE) cyclizes geranylgeranyl diphosphate (GGPP) into a 6/10-fused bicyclic cis-eunicellane skeleton. Next, a cytochrome P450 (AriF) catalyzes cyclization of the eunicellane skeleton into the 6/7/5-fused tricyclic scaffold through C2-C6 bond formation. Based on the results of quantum chemical computations, hydrogen abstraction followed by electron transfer coupled to barrierless carbocation ring closure is shown to be a viable mechanism for AriF-mediated cyclization. The biosynthetic logic of skeleton construction in the aridacins is unprecedented, expanding the catalytic capacity and diversity of P450s and setting the stage to investigate the inherent principles of carbocation generation by P450s in the biosynthesis of terpenoids.


Asunto(s)
Diterpenos , Terpenos , Ciclización , Terpenos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/química , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...