Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 718, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267419

RESUMEN

Domain boundaries have been intensively investigated in bulk ferroelectric materials and two-dimensional materials. Many methods such as electrical, mechanical and optical approaches have been utilized to probe and manipulate domain boundaries. So far most research focuses on the initial and final states of domain boundaries before and after manipulation, while the microscopic understanding of the evolution of domain boundaries remains elusive. In this paper, we report controllable manipulation of the domain boundaries in two-dimensional ferroelectric In2Se3 with atomic precision using scanning tunneling microscopy. We show that the movements of the domain boundaries can be driven by the electric field from a scanning tunneling microscope tip and proceed by the collective shifting of atoms at the domain boundaries. Our density functional theory calculations reveal the energy path and evolution of the domain boundary movement. The results provide deep insight into domain boundaries in two-dimensional ferroelectric materials and will inspire inventive applications of these materials.

2.
J Phys Chem Lett ; 14(19): 4554-4559, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37159549

RESUMEN

Defects are of significant importance to determine and improve the distinct properties of 2D materials, such as electronic, optical, and catalytic performance. In this report, we observe four types of point defects in atomically thin flakes of 1T-PtTe2 by using low-temperature scanning tunnelling microscopy and spectroscopy (STM/S). Through the combination of STM imaging and simulations, such defects are identified as a single tellurium vacancy from each side of the top PtTe2 layer and a single platinum vacancy from the topmost and next layer. The density functional theory (DFT) calculations reveal that the platinum vacancies from both the monolayer and bilayer exhibit a local magnetic moment. In bilayer PtTe2, the interlayer coulomb screening effect reduces the local magnetic momentum of the single platinum vacancy. Our research provides meaningful guidance for further experiments about the effects of intrinsic defects on potential functions of thin 1T-PtTe2, such as catalysis and spintronic applications.

3.
J Am Chem Soc ; 144(36): 16287-16291, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36037095

RESUMEN

We report the first experimental characterization of isomerically pure and pristine C120 fullertubes, [5,5] C120-D5d(1) and [10,0] C120-D5h(10766). These new molecules represent the highest aspect ratio fullertubes isolated to date; for example, the prior largest empty cage fullertube was [5,5] C100-D5d(1). This increase of 20 carbon atoms represents a gigantic leap in comparison to three decades of C60-C90 fullerene research. Moreover, the [10,0] C120-D5d(10766) fullertube has an end-cap derived from C80-Ih and is a new fullertube whose C40 end-cap has not yet been isolated experimentally. Theoretical and experimental analyses of anisotropic polarizability and UV-vis assign C120 isomer I as a [5,5] C120-D5d(1) fullertube. C120 isomer II matches a [10,0] C120-D5h(10766) fullertube. These structural assignments are further supported by Raman data showing metallic character for [5,5] C120-D5d(1) and nonmetallic character for C120-D5h(10766). STM imaging reveals a tubular structure with an aspect ratio consistent with a [5,5] C120-D5d(1) fullertube. With microgram quantities not amenable to crystallography, we demonstrate that DFT anisotropic polarizability, augmented by long-accepted experimental analyses (HPLC retention time, UV-vis, Raman, and STM) can be synergistically used (with DFT) to down select, predict, and assign C120 fullertube candidate structures. From 10 774 mathematically possible IPR C120 structures, this anisotropic polarizability paradigm is quite favorable to distinguish tubular structures from carbon soot. Identification of isomers I and II was surprisingly facile, i.e., two purified isomers for two possible structures of widely distinguishing features. These metallic and nonmetallic C120 fullertube isomers open the door to both fundamental research and application development.


Asunto(s)
Fulerenos , Fulerenos/química , Isomerismo
4.
J Phys Chem Lett ; 12(49): 11902-11909, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34878795

RESUMEN

Domain boundaries in ferroelectric materials exhibit rich and diverse physical properties distinct from their parent materials and have been proposed for broad applications in nanoelectronics and quantum information technology. Due to their complexity and diversity, the internal atomic and electronic structure of domain boundaries that governs the electronic properties remains far from being elucidated. By using scanning tunneling microscopy and spectroscopy (STM/S) combined with density functional theory (DFT) calculations, we directly visualize the atomic structure of polar domain boundaries in two-dimensional (2D) ferroelectric ß'-In2Se3 down to the monolayer limit. We observe a double-barrier energy potential with a width of about 3 nm across the 60° tail-to-tail domain boundaries in monolayer ß'-In2Se3. The results will deepen our understanding of domain boundaries in 2D ferroelectric materials and stimulate innovative applications of these materials.

5.
ACS Nano ; 13(7): 8004-8011, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31241301

RESUMEN

Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the ß phase with a superstructure at room temperature. At around 180 K, the ß phase converted to a more stable ß' phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven ß-to-ß' phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the ß' phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer ß' In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).

6.
Angew Chem Int Ed Engl ; 58(21): 6977-6981, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30919540

RESUMEN

Two-dimensional (2D) PtSe2 shows the most prominent layer-dependent electrical properties among various 2D materials and high catalytic activity for hydrogen evolution reaction (HER), and therefore, it is an ideal material for exploring the structure-activity correlations in 2D systems. Here, starting with the synthesis of single-crystalline 2D PtSe2 with a controlled number of layers and probing the HER catalytic activity of individual flakes in micro electrochemical cells, we investigated the layer-dependent HER catalytic activity of 2D PtSe2 from both theoretical and experimental perspectives. We clearly demonstrated how the number of layers affects the number of active sites, the electronic structures, and electrical properties of 2D PtSe2 flakes and thus alters their catalytic performance for HER. Our results also highlight the importance of efficient electron transfer in achieving optimum activity for ultrathin electrocatalysts. Our studies greatly enrich our understanding of the structure-activity correlations for 2D catalysts and provide new insight for the design and synthesis of ultrathin catalysts with high activity.

7.
J Vis Exp ; (135)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29863668

RESUMEN

Physical thermal deposition in a high vacuum environment is a clean and controllable method for fabricating novel molecular nanostructures on graphene. We present methods for depositing and passively manipulating C60 molecules on rippled graphene that advance the pursuit of realizing applications involving 1D C60/graphene hybrid structures. The techniques applied in this exposition are geared towards high vacuum systems with preparation areas capable of supporting molecular deposition as well as thermal annealing of the samples. We focus on C60 deposition at low pressure using a homemade Knudsen cell connected to a scanning tunneling microscopy (STM) system. The number of molecules deposited is regulated by controlling the temperature of the Knudsen cell and the deposition time. One-dimensional (1D) C60 chain structures with widths of two to three molecules can be prepared via tuning of the experimental conditions. The surface mobility of the C60 molecules increases with annealing temperature allowing them to move within the periodic potential of the rippled graphene. Using this mechanism, it is possible to control the transition of 1D C60 chain structures to a hexagonal close packed quasi-1D stripe structure.


Asunto(s)
Grafito/química , Nanoestructuras/química
8.
Nanotechnology ; 29(18): 185703, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29451137

RESUMEN

In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.

9.
Nano Lett ; 18(3): 2179-2185, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29461061

RESUMEN

To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe2 surfaces as a model system, we have observed nonlinear area evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) subjected electrical stressing. The observed growth dynamics represent a 2D departure from the linear area growth law expected for bulk vacancy clustering. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations, and point toward preferential edge atom dissociation under STM scanning driving the observed nonlinear area growth. We further quantified a parabolic growth rate dependence with respect to the tunneling current magnitude. The results could be potentially important for device reliability in systems containing ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing.

10.
ACS Appl Mater Interfaces ; 9(39): 34071-34077, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28902488

RESUMEN

Tensile strain is intrinsic to monolayer crystals of transition metal disulfides such as Mo(W)S2 grown on oxidized silicon substrates by chemical vapor deposition (CVD) owing to the much larger thermal expansion coefficient of Mo(W)S2 than that of silica. Here we report fascinating fluorescent variation in intensity with aging time in CVD-grown triangular monolayer WS2 crystals on SiO2 (300 nm)/Si substrates and formation of interesting concentric triangular fluorescence patterns in monolayer crystals of large size. The novel fluorescence aging behavior is recognized to be induced by the partial release of intrinsic tensile strain after CVD growth and the induced localized variations or gradients of strain in the monolayer crystals. The results demonstrate that strain has a dramatic impact on the fluorescence and photoluminescence of monolayer WS2 crystals and thus could potentially be utilized to tune electronic and optoelectronic properties of monolayer transition metal disulfides.

11.
Angew Chem Int Ed Engl ; 56(31): 8981-8985, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28573663

RESUMEN

Two-dimensional (2D) metallic transition-metal dichalcogenides (TMDCs), such as 1T-TiSe2 , have recently emerged as unique platforms for exploring their exciting properties of superconductivity and the charge density wave (CDW). 2D 1T-TiSe2 undergoes rapid oxidation under ambient conditions, significantly affecting its CDW phase-transition behavior. We comprehensively investigate the oxidation process of 2D TiSe2 by tracking the evolution of the chemical composition and atomic structure with various microscopic and spectroscopic techniques and reveal its unique selenium-assisting oxidation mechanism. Our findings facilitate a better understanding of the chemistry of ultrathin TMDCs crystals, introduce an effective method to passivate their surfaces with capping layers, and thus open a way to further explore the functionality of these materials toward devices.

12.
J Am Chem Soc ; 138(50): 16216-16219, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998095

RESUMEN

Two-dimensional (2D) metallic transition metal dichalcogenides (TMDCs), such as 1T-TiSe2, are ideal systems for exploring the fundamentals in condensed matter physics. However, controlled synthesis of these ultrathin materials has not been achieved. Here, we explored the synthesis of charge density wave (CDW)-bearing 2D TiSe2 with chemical vapor transport (CVT) by extending this bulk crystal growth approach to the surface growth of TiSe2 by introducing suitable growth substrates and dramatically slowing down the growth rate. Sub-10 nm TiSe2 flakes were successfully obtained, showing comparable quality to the mechanically exfoliated thin flakes. A CDW state with 2 × 2 superstructure was clearly observed on these ultrathin flakes by scanning tunneling microscopy (STM), and the phase transition temperature of these flakes was investigated by transport measurements, confirming the existence of CDW states. Our work opens up a new approach to synthesizing 2D CDW and superconductive TMDCs for exploring new fundamentals and applications in novel electronics.

13.
Sci Rep ; 5: 14336, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26391054

RESUMEN

We report the preparation of novel quasi-one-dimensional (quasi-1D) C60 nanostructures on rippled graphene. Through careful control of the subtle balance between the linear periodic potential of rippled graphene and the C60 surface mobility, we demonstrate that C60 molecules can be arranged into a quasi-1D C60 chain structure with widths of two to three molecules. At a higher annealing temperature, the quasi-1D chain structure transitions to a more compact hexagonal close packed quasi-1D stripe structure. This first experimental realization of quasi-1D C60 structures on graphene may pave a way for fabricating new C60/graphene hybrid structures for future applications in electronics, spintronics and quantum information.

14.
ACS Nano ; 7(1): 198-202, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23194280

RESUMEN

The edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high-quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair, and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions, and terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.


Asunto(s)
Cristalización/métodos , Grafito/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
15.
Science ; 328(5979): 736-40, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20448180

RESUMEN

In nanoscale metal wires, electrical current can cause structural changes through electromigration, in which the momentum of electrons biases atomic motion, but the microscopic details are complex. Using in situ scanning tunneling microscopy, we examined the effects of thermally excited defects on the current-biased displacement of monatomic islands of radius 2 to 50 nanometers on single-crystal Ag(111). The islands move opposite to the current direction, with velocity varying inversely with radius. The force is thus in the same direction as electron flow and acts on atomic defect sites at the island edge. The unexpectedly large force on the boundary atoms can be decreased by over a factor of 10 by adding a mildly electron-withdrawing adsorbate, C60, which also modifies the step geometry. The low coordination of the identified scattering sites is the likely origin of the large force.

16.
Nano Lett ; 9(12): 3963-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19904920

RESUMEN

Bipolar molecules incorporating donor and acceptor components within a single molecule create exciting device opportunities due to their possible use as nanoscale p-n heterojunctions. Here we report a direct characterization of the internal electronic structure of a single bipolar molecular heterojunction, including subnanometer features of the intramolecular donor-acceptor interface. Angstrom-resolved scanning tunneling spectroscopy was used to map the energy levels and spatial extent of molecular orbitals across the surface of an individual bipolar molecule, bithiophene naphthalene diimide (BND). We find that individual BND molecules exhibit type II heterojunction behavior with orbital energy shifts occurring over subnanometer intramolecular interface distances. Comparison of this behavior with first-principles theoretical modeling provides new insights into the optimization of these molecular systems.


Asunto(s)
Imidas/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Naftalenos/química , Simulación por Computador
17.
Phys Rev Lett ; 102(8): 085501, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19257751

RESUMEN

The decoration of hexagonal Ag/Ag(111) monolayer islands by chains of C60, observed via STM at 300 K, dramatically changes the nanocrystalline shape and fluctuations of the islands. We tune coverage so that a single chain of C60 fully decorates each Ag island boundary, forming a closed circular "necklace." We model the C60-induced rounding in terms of competing energetic and entropic effects. We thereby characterize the decorated-step fluctuations and estimate the C60-Ag and C60-C60 attractions to be approximately 0.13 and approximately 0.03 eV, respectively. Generalizations of our model show that decorating molecules of both circular and rectangular surface-projected symmetry will similarly lower the energy of fully kinked boundaries, leading to corner rounding and reorientations by 30 degrees on (111) surfaces and 45 degrees on (100) surfaces.

18.
Proc Natl Acad Sci U S A ; 105(43): 16418-25, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18765797

RESUMEN

Low-dimensional boundaries between phases and domains in organic thin films are important in charge transport and recombination. Here, fluctuations of interfacial boundaries in an organic thin film, acridine-9-carboxylic acid on Ag(111), have been visualized in real time and measured quantitatively using scanning tunneling microscopy. The boundaries fluctuate via molecular exchange with exchange time constants of 10-30 ms at room temperature, with length-mode fluctuations that should yield characteristic f(-1/2) signatures for frequencies less than approximately 100 Hz. Although acridine-9-carboxylic acid has highly anisotropic intermolecular interactions, it forms islands that are compact in shape with crystallographically distinct boundaries that have essentially identical thermodynamic and kinetic properties. The physical basis of the modified symmetry is shown to arise from significantly different substrate interactions induced by alternating orientations of successive molecules in the condensed phase. Incorporating this additional set of interactions in a lattice-gas model leads to effective multicomponent behavior, as in the Blume-Emery-Griffiths model, and can straightforwardly reproduce the experimentally observed isotropic behavior. The general multicomponent description allows the domain shapes and boundary fluctuations to be tuned from isotropic to highly anisotropic in terms of the balance between intermolecular interactions and molecule-substrate interactions.

19.
Nano Lett ; 7(6): 1495-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17352508

RESUMEN

We have created self-assembled circular chains of C60 laterally bound to a layer of Ag atoms as a model system for characterizing fluctuations at a metal-molecule interface. STM measurements show that the Ag and C60 sides of the interface fluctuate independently, with frequency-dependent amplitudes of magnitude 0.1 nm at approximately 1 Hz for the Ag edge and approximately 0.01 Hz for the C60 ring. The measured frequency spectra of the metal and molecule fluctuation amplitudes will contribute characteristic signatures to transport measurements involving such interfaces.


Asunto(s)
Fulerenos/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Plata/química , Simulación por Computador , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
J Am Chem Soc ; 128(26): 8493-9, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16802815

RESUMEN

The dependence of supramolecular structure on fractional molecular coverage has been investigated for acridine-9-carboxylic acid (ACA) and the C(60):ACA binary molecular system. The coverage-dependent phase diagram for ACA is first determined from room-temperature STM imaging. At low molecular coverages (theta < 0.4 ML, ML = monolayer), ACA forms a 2-D gas phase. Ordered ACA structures appear with increasing coverage: first a chain structure composed of ACA molecules linked by consecutive O-H...N hydrogen bonds (theta > 0.4 ML), then a dimer structure composed of ACA dimers linked by paired carboxyl-carboxyl hydrogen bonds (theta approximately equal to 1.0 ML). Structures of the C(60):ACA binary system depend on the coverage of predeposited ACA. At intermediate (0.4 ML approximately 0.8 ML) ACA coverages, C(60) deposition results in a hexagonal cooperative structure with the C(60) periodicity nearly 3 times that of the normal C(60) 2-D packing of 1 nm and exists in enantiopure domains. At higher ACA coverages, a C(60) quasi-chain structure is formed in which parallel C(60) chains are spaced by ACA dimer domains. The mechanistic role of the initial ACA phase in the formation of C(60):ACA supramolecular structures is described. Chemically intuitive molecular packing models are presented based on the observed STM images.


Asunto(s)
Acridinas/química , Fulerenos/química , Membranas Artificiales , Plata/química , Enlace de Hidrógeno , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...