Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(3): 333-343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37699698

RESUMEN

The HUMIMIC skin-liver Chip2 microphysiological systems model using the epidermal model, EpiDerm™, was reported previously to mimic application route-dependent metabolism of the hair dye, 4-amino-2-hydroxytoluene (AHT). Therefore, we evaluated the use of alternative skin models-SkinEthic™, EpiDermFT™ and PhenionFT™-for the same purpose. In static incubations, AHT permeation was similar using SkinEthic™ and EpiDerm™ models. Older Day 21 (D21) SkinEthic™ models with a thicker stratum corneum did not exhibit a greater barrier to AHT (overall permeation was the same in D17 and D21 models). All epidermal models metabolised AHT, with the EpiDerm™ exhibiting higher N-acetylation than SkinEthic™ models. AHT metabolism by D21 SkinEthic™ models was lower than that by D17 SkinEthic™ and EpiDerm™ models, thus a thicker stratum corneum was associated with fewer viable cells and a lower metabolic activity. AHT permeation was much slower using PhenionFT™ compared to epidermal models and better reflected permeation of AHT through native human skin. This model also extensively metabolised AHT to N-acetyl-AHT. After a single topical or systemic application of AHT to Chip2 model with PhenionFT™, medium was analysed for parent and metabolites over 5 days. The first-pass metabolism of AHT was demonstrated, and the introduction of a wash step after 30 min decreased the exposure to AHT and its metabolites by 33% and 40%-43%, respectively. In conclusion, epidermal and FT skin models used in the Chip2 can mimic the first-pass skin metabolism of AHT. This highlights the flexibility of the Chip2 to incorporate different skin models according to the purpose.


Asunto(s)
Cresoles , Tinturas para el Cabello , Humanos , Tinturas para el Cabello/metabolismo , Piel/metabolismo , Compuestos de Anilina/metabolismo , Hígado
2.
J Appl Toxicol ; 44(2): 287-300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37700462

RESUMEN

The HUMMIC skin-liver Chip2 microphysiological system using EpiDerm™ and HepaRG and stellate liver spheroids was used to evaluate the route-specific metabolism and toxicodynamic effects of genistein. Human-relevant exposure levels were compared: 60 nM representing the plasma concentration expected after topical application of a cosmetic product and 1 µM representing measured plasma concentrations after ingesting soya products. Genistein was applied as single and repeated topical and/or systemic doses. The kinetics of genistein and its metabolites were measured over 5 days. Toxicodynamic effects were measured using transcriptional analyses of skin and liver organoids harvested on Days 2 and 5. Route-specific differences in genistein's bioavailability were observed, with first-pass metabolism (sulfation) occurring in the skin after topical application. Only repeated application of 1 µM, resembling daily oral intake of soya products, induced statistically significant changes in gene expression in liver organoids only. This was concomitant with a much higher systemic concentration of genistein which was not reached in any other dosing scenario. This suggests that single or low doses of genistein are rapidly metabolised which limits its toxicodynamic effects on the liver and skin. Therefore, by facilitating longer and/or repeated applications, the Chip2 can support safety assessments by linking relevant gene modulation with systemically available parent or metabolite(s). The rate of metabolism was in accordance with the short half-life observed in in vivo in humans, thus supporting the relevance of the findings. In conclusion, the skin-liver Chip2 provides route-specific information on metabolic fate and toxicodynamics that may be relevant to safety assessment.


Asunto(s)
Genisteína , Piel , Humanos , Genisteína/toxicidad , Toxicocinética , Hígado
3.
Front Pharmacol ; 14: 1076254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843954

RESUMEN

All cosmetic ingredients registered in Europe must be evaluated for their safety using non-animal methods. Microphysiological systems (MPS) offer a more complex higher tier model to evaluate chemicals. Having established a skin and liver HUMIMIC Chip2 model demonstrating how dosing scenarios impact the kinetics of chemicals, we investigated whether thyroid follicles could be incorporated to evaluate the potential of topically applied chemicals to cause endocrine disruption. This combination of models in the HUMIMIC Chip3 is new; therefore, we describe here how it was optimized using two chemicals known to inhibit thyroid production, daidzein and genistein. The MPS was comprised of Phenion® Full Thickness skin, liver spheroids and thyroid follicles co-cultured in the TissUse HUMIMIC Chip3. Endocrine disruption effects were determined according to changes in thyroid hormones, thyroxine (T4) and 3,3',5-triiodothyronine (T3). A main part of the Chip3 model optimization was the replacement of freshly isolated thyroid follicles with thyrocyte-derived follicles. These were used in static incubations to demonstrate the inhibition of T4 and T3 production by genistein and daidzein over 4 days. Daidzein exhibited a lower inhibitory activity than genistein and both inhibitory activities were decreased after a 24 h preincubation with liver spheroids, indicating metabolism was via detoxification pathways. The skin-liver-thyroid Chip3 model was used to determine a consumer-relevant exposure to daidzein present in a body lotion based on thyroid effects. A "safe dose" of 0.235 µg/cm2 i.e., 0.047% applied in 0.5 mg/cm2 of body lotion was the highest concentration of daidzein which does not result in changes in T3 and T4 levels. This concentration correlated well with the value considered safe by regulators. In conclusion, the Chip3 model enabled the incorporation of the relevant exposure route (dermal), metabolism in the skin and liver, and the bioactivity endpoint (assessment of hormonal balance i.e., thyroid effects) into a single model. These conditions are closer to those in vivo than 2D cell/tissue assays lacking metabolic function. Importantly, it also allowed the assessment of repeated doses of chemical and a direct comparison of systemic and tissue concentrations with toxicodynamic effects over time, which is more realistic and relevant for safety assessment.

4.
J Appl Toxicol ; 41(10): 1553-1567, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33594739

RESUMEN

We used TissUse's HUMIMIC Chip2 microfluidic model, incorporating reconstructed skin models and liver spheroids, to investigate the impact of consumer-relevant application scenarios on the metabolic fate of the hair dye, 4-amino-2-hydroxytoluene (AHT). After a single topical or systemic application of AHT to Chip2 models, medium was analysed for parent and metabolites over 5 days. The metabolic profile of a high dose (resulting in a circuit concentration of 100 µM based on 100% bioavailability) of AHT was the same after systemic and topical application to 96-well EpiDerm™ models. Additional experiments indicated that metabolic capacity of EpiDerm™ models were saturated at this dose. At 2.5 µM, concentrations of AHT and several of its metabolites differed between application routes. Topical application resulted in a higher Cmax and a 327% higher area under the curve (AUC) of N-acetyl-AHT, indicating a first-pass effect in the EpiDerm™ models. In accordance with in vivo observations, there was a concomitant decrease in the Cmax and AUC of AHT-O-sulphate after topical, compared with systemic application. A similar alteration in metabolite ratios was observed using a 24-well full-thickness skin model, EpiDermFT™, indicating that a first-pass effect was also possible to detect in a more complex model. In addition, washing the EpiDermFT™ after 30 min, thus reflecting consumer use, decreased the systemic exposure to AHT and its metabolites. In conclusion, the skin-liver Chip2 model can be used to (a) recapitulate the first-pass effect of the skin and alterations in the metabolite profile of AHT observed in vivo and (b) provide consumer-relevant data regarding leave-on/rinse-off products.


Asunto(s)
Compuestos de Anilina/metabolismo , Compuestos de Anilina/toxicidad , Cresoles/metabolismo , Cresoles/toxicidad , Tinturas para el Cabello/metabolismo , Tinturas para el Cabello/toxicidad , Hígado/metabolismo , Piel/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Humanos , Hígado/efectos de los fármacos , Técnicas de Cultivo de Órganos , Piel/efectos de los fármacos
5.
Toxicology ; 448: 152637, 2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33220337

RESUMEN

Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.


Asunto(s)
Hígado/efectos de los fármacos , Permetrina/farmacocinética , Floroglucinol/análogos & derivados , Piel/efectos de los fármacos , Terpenos/farmacocinética , Técnicas de Cultivo de Tejidos/métodos , Humanos , Insecticidas/toxicidad , Hígado/citología , Hígado/metabolismo , Técnicas de Cultivo de Órganos/métodos , Permetrina/toxicidad , Floroglucinol/farmacocinética , Floroglucinol/toxicidad , Piel/citología , Piel/metabolismo , Terpenos/toxicidad
6.
In Vitro Cell Dev Biol Anim ; 56(10): 847-858, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33170472

RESUMEN

Access to complex in vitro models that recapitulate the unique markers and cell-cell interactions of the hair follicle is rather limited. Creation of scalable, affordable, and relevant in vitro systems which can provide predictive screens of cosmetic ingredients and therapeutic actives for hair health would be highly valued. In this study, we explore the features of the microfollicle, a human hair follicle organoid model based on the spatio-temporally defined co-culture of primary cells. The microfollicle provides a 3D differentiation platform for outer root sheath keratinocytes, dermal papilla fibroblasts, and melanocytes, via epidermal-mesenchymal-neuroectodermal cross-talk. For assay applications, microfollicle cultures were adapted to 96-well plates suitable for medium-throughput testing up to 21 days, and characterized for their spatial and lineage markers. The microfollicles showed hair-specific keratin expression in both early and late stages of cultivation. The gene expression profile of microfollicles was also compared with human clinical biopsy samples in response to the benchmark hair-growth compound, minoxidil. The gene expression changes in microfollicles showed up to 75% overlap with the corresponding gene expression signature observed in the clinical study. Based on our results, the cultivation of the microfollicle appears to be a practical tool for generating testable insights for hair follicle development and offers a complex model for pre-clinical substance testing.


Asunto(s)
Folículo Piloso/citología , Modelos Biológicos , Biomarcadores/metabolismo , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Folículo Piloso/ultraestructura , Humanos , Recién Nacido , Queratinas/metabolismo , Masculino , Melanocitos/citología , Melanocitos/efectos de los fármacos , Minoxidil/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Pharm ; 589: 119788, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882369

RESUMEN

Skin model cultivation under static conditions limits the observation of the toxicity to this single organ. Biology-inspired microphysiological systems associating skin with a liver in the same circulating medium provide a more comprehensive insight into systemic substance toxicity; however, its advantages or limitations for topical substance toxicity remain unknown. Herein, we performed topical (OECD test guideline no. 439) and systemic administration of terbinafine in reconstructed human skin (RHS) vs. a RHS plus liver model cultured in TissUse' HUMIMIC Chip2 (Chip2). Aiming for a more detailed insight into the cutaneous substance irritancy/toxicity, we assessed more than the MTT cell viability: lactate dehydrogenase (LDH), lactate and glucose levels, as well as inherent gene expressions. Sodium dodecyl sulfate (SDS) was the topical irritant positive control. We confirmed SDS irritancy in both static RHS and Chip2 culture by the damage in the morphology, reduction in the lactate production and lower glucose consumption. In the static RHS, the SDS-treated tissues also released significantly high LDH (82%; p < 0.05) and significantly lower IL-6 release (p < 0.05), corroborating with the other metabolic levels. In both static RHS and Chip2 conditions, we confirmed absence of irritancy or systemic toxicity by LDH, glucose or lactate levels for topical 1% and 5% terbinafine and systemic 0.1% terbinafine treatment. However, topical 5% terbinafine treatment in the Chip2 upregulated IL-1α in the RHS, unbalanced apoptotic and proliferative cell ratios in the liver and significantly increased its expression of CYP1A2 and 3A4 enzymes (p < 0.05), proving that it has passed the RHS barrier promoting a liver impact. Systemic 0.1% terbinafine treatment in the Chip2 increased RHS expression of EGFR, increased apoptotic cells in the liver, downregulated liver albumin expression and upregulated CYP2C9 significantly (p < 0.05), acting as an effective hepatotoxic terbinafine control. The combination of the RHS and liver model in the Chip2 allowed a more sensitive assessment of skin and hepatic effects caused by chemicals able to pass the skin (5% terbinafine and SDS) and after systemic 0.1% terbinafine application. The present study opens up a more complex approach based on the microphysiological system to assess more than a skin irritation process.


Asunto(s)
Preparaciones Farmacéuticas , Humanos , Irritantes/farmacología , Dispositivos Laboratorio en un Chip , Piel , Dodecil Sulfato de Sodio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...