Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 1492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714311

RESUMEN

Insect gut microbes play important roles in host feeding, digestion, immunity, growth and development. Spodoptera litura is an important agricultural pest distributed of global importance. In the present study, diversity and functions of the gut bacteria in S. litura are investigated based on the approaches of metagenomics and denaturing gradient gel electrophoresis (DGGE). The results showed that the gut bacterial diversity of S. litura reared on taro leaves or an artificial diet, were similar at the phylum level, as both were mainly composed of Proteobacteria, but differed significantly at the order level. Spodoptera litura reared on taro leaves (Sl-tar) had gut biota mainly comprised of Enterobacteriales and Lactobacillales, while those reared on artificial diet (Sl-art) predominantly contained Pseudomonadales and Enterobacteriales, suggesting that gut bacteria composition was closely related to the insect's diet. We found that feeding and growth of S. litura were significantly reduced when individuals were treated with antibiotics, but could be both restored to a certain extent after reimporting gut bacteria, indicating that gut bacteria are important for feeding, digestion, and utilization of food in S. litura. Metagenomic sequencing of gut microbes revealed that the gut bacteria encode a large number of enzymes involved in digestion, detoxification, and nutrient supply, implying that the gut microbes may be essential for improving the efficiency of food utilization in S. litura.

2.
Dev Comp Immunol ; 107: 103661, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32097696

RESUMEN

The diamondback moth, Plutella xylostella, is the first insect to develop resistance to Bacillus thuringiensis (Bt) in the field. To date, little is known about the molecular mechanism of the interaction between Bt and midgut immunity in P. xylostella. Here, we report immune responses in the P. xylostella midgut to Bt strain Bt8010 using a combined approach of transcriptomics and quantitative proteomics. Many genes in the Toll, IMD, JNK and JAK-STAT pathways and antimicrobial peptide genes were activated at 18 h post-infection. In the prophenoloxidase (PPO) cascade, four serpin genes were activated, and the PPO1 gene was suppressed by Bt8010. Inhibition of the two PPO proteins was observed at 18 h post-infection. Feeding Bt8010-infected larvae recombinant PPOs enhanced their survival. These results revealed that the Toll, IMD, JNK and JAK-STAT pathways were triggered and participated in the immune defence of the midgut against Bt8010, while the PPO cascade was inhibited and played an important role in this process.


Asunto(s)
Bacillus thuringiensis/fisiología , Sistema Digestivo/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/inmunología , Animales , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Células Cultivadas , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas de Insectos/genética , Larva , Serpinas/genética , Serpinas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...