Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35662394

RESUMEN

LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa , Animales , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Ratones , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/fisiología
2.
Elife ; 112022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35234610

RESUMEN

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Animales , Mutación con Ganancia de Función , Ratones , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/fisiología , Ratas , Sodio , Bloqueadores de los Canales de Sodio/farmacología
3.
Neuron ; 79(4): 680-95, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23911104

RESUMEN

Selective synapse development determines how complex neuronal networks in the brain are formed. Complexes of postsynaptic neuroligins and LRRTMs with presynaptic neurexins contribute widely to excitatory synapse development, and mutations in these gene families increase the risk of developing psychiatric disorders. We find that LRRTM4 has distinct presynaptic binding partners, heparan sulfate proteoglycans (HSPGs). HSPGs are required to mediate the synaptogenic activity of LRRTM4. LRRTM4 shows highly selective expression in the brain. Within the hippocampus, we detected LRRTM4 specifically at excitatory postsynaptic sites on dentate gyrus granule cells. LRRTM4(-/-) dentate gyrus granule cells, but not CA1 pyramidal cells, exhibit reductions in excitatory synapse density and function. Furthermore, LRRTM4(-/-) dentate gyrus granule cells show impaired activity-regulated AMPA receptor trafficking. These results identifying cell-type-specific functions and multiple presynaptic binding partners for different LRRTM family members reveal an unexpected complexity in the design and function of synapse-organizing proteins.


Asunto(s)
Giro Dentado/citología , Potenciales Postsinápticos Excitadores/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Chlorocebus aethiops , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Guanilato-Quinasas , Proteoglicanos de Heparán Sulfato/genética , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/ultraestructura , Transporte de Proteínas/genética , Ratas , Receptores AMPA/metabolismo , Sinapsis/ultraestructura , Sinapsinas/metabolismo
4.
Cell ; 151(1): 41-55, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021214

RESUMEN

Natural sensory input shapes both structure and function of developing neurons, but how early experience-driven morphological and physiological plasticity are interrelated remains unclear. Using rapid time-lapse two-photon calcium imaging of network activity and single-neuron growth within the unanesthetized developing brain, we demonstrate that visual stimulation induces coordinated changes to neuronal responses and dendritogenesis. Further, we identify the transcription factor MEF2A/2D as a major regulator of neuronal response to plasticity-inducing stimuli directing both structural and functional changes. Unpatterned sensory stimuli that change plasticity thresholds induce rapid degradation of MEF2A/2D through a classical apoptotic pathway requiring NMDA receptors and caspases-9 and -3/7. Knockdown of MEF2A/2D alone is sufficient to induce a metaplastic shift in threshold of both functional and morphological plasticity. These findings demonstrate how sensory experience acting through altered levels of the transcription factor MEF2 fine-tunes the plasticity thresholds of brain neurons during neural circuit formation.


Asunto(s)
Encéfalo/embriología , Factores Reguladores Miogénicos/metabolismo , Plasticidad Neuronal , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Percepción Auditiva , Encéfalo/citología , Caspasas/metabolismo , Factores de Transcripción MEF2 , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sonido , Percepción Visual
5.
Neuron ; 67(6): 967-83, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869594

RESUMEN

Cell adhesion molecules are well characterized for mediating synapse initiation, specification, differentiation, and maturation, yet their contribution to directing dendritic arborization during early brain circuit formation remains unclear. Using two-photon time-lapse imaging of growing neurons within intact and awake embryonic Xenopus brain, we examine roles of ß-neurexin (NRX) and neuroligin-1 (NLG1) in dendritic arbor development. Using methods of dynamic morphometrics for comprehensive 3D quantification of rapid dendritogenesis, we find initial trans-synaptic NRX-NLG1 adhesions confer transient morphologic stabilization independent of NMDA receptor activity, whereas persistent stabilization requires NMDA receptor-dependent synapse maturation. Disrupting NRX-NLG1 function destabilizes filopodia while reducing synaptic density and AMPA receptor mEPSC frequency. Altered dynamic growth culminates in reduced dendritic arbor complexity as neurons mature over days. These results expand the synaptotropic model of dendritogenesis to incorporate cell adhesion molecule-mediated morphological stabilization necessary for directing normal dendritic arborization, providing a potential morphological substrate for developmental cognitive impairment associated with cell adhesion molecule mutations.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurotoxinas/metabolismo , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/genética , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Imagenología Tridimensional/métodos , Inmunoprecipitación , Larva , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Microscopía Confocal/métodos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/fisiología , Receptores AMPA/metabolismo , Colículos Superiores/crecimiento & desarrollo , Colículos Superiores/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Factores de Tiempo , Xenopus
6.
J Neurosci ; 29(39): 12229-35, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19793981

RESUMEN

The molecular mechanisms underlying activity-dependent neural circuit growth and plasticity during early brain development remain poorly understood. Protein kinase Mzeta (PKMz), an endogenous constitutively active kinase associated with late-phase long-term synaptic potentiation and memory in the mature brain, is expressed in the embryonic Xenopus retinotectal system with heightened levels during peak periods of dendrite growth and synaptogenesis. In vivo rapid time-lapse imaging of actively growing tectal neurons and comprehensive three-dimensional tracking of dynamic dendritic growth behavior finds that altered PKMz activity affects morphologic stabilization. Exogenous expression of PKMz within single neurons stabilizes dendritic filopodia by increasing dendritic filopodial lifetimes and decreasing filopodial additions, eliminations, and motility, whereas long-term in vivo imaging demonstrates restricted expansion of the dendritic arbor. Alternatively, blocking endogenous PKMz activity in individual growing tectal neurons with an inhibitory peptide (zeta-inhibitory peptide) destabilizes dendritic filopodia and over long periods promotes excessive arbor expansion. Furthermore, inhibiting endogenous PKMz throughout the tectum decreases colocalization of immunostained presynaptic and postsynaptic markers, SNAP-25 and PSD-95, respectively, suggesting impaired synapse maintenance. Together, these results implicate PKMz activity in restricting dendritic arborization during embryonic brain circuit development through synaptotropic stabilization of dynamic processes.


Asunto(s)
Encéfalo/embriología , Dendritas/enzimología , Proteína Quinasa C/fisiología , Seudópodos/enzimología , Vigilia/fisiología , Proteínas de Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Ratones , Datos de Secuencia Molecular , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Colículos Superiores/enzimología , Colículos Superiores/crecimiento & desarrollo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA