Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 936005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992102

RESUMEN

Objective: To determine whether the timing of puberty associates with school performance. Methods: Growth data on 13,183 children born between 1997 and 2002, were collected from child health clinics and school healthcare and school performance data from school records. Age at peak height velocity (PHV) marked pubertal timing. The relationships between age at PHV and average grades in mathematics, native language, English, and physical education from school years 6 (end of elementary school; age 11-12 years), 7 (start of middle school; 12-13 years), and 9 (end of middle school; 14-15 years) were modeled using generalized estimating equations and linear mixed models, adjusted for the month of birth and annual income and education levels in school catchment areas. Results: The mean (SD) age at PHV was 13.54 (1.17) years in boys and 11.43 (1.18) years in girls. In girls, age at PHV was associated with grades in mathematics (ß=0.041-0.062, p<0.005) and physical education (ß=0.077-0.107, p<0.001) across the study years, and in school year 9, also with grades in English (ß=-0.047, 95%CI -0.072 to -0.021, p<0.001). Among boys, only the grades in physical education were related to age at PHV across the study years (ß=0.026-0.073, p<0.01) and in middle school the grades in mathematics decreased dramatically. Conclusions: In both sexes, the timing of puberty was associated with the grades in physical education, and in girls, with academic achievement. The decrease in boys' mathematics grades and sex difference in academic achievement were unexplained by the timing of puberty.


Asunto(s)
Estatura , Pubertad , Niño , Femenino , Humanos , Masculino
2.
EClinicalMedicine ; 51: 101556, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35875813

RESUMEN

Background: Childhood-onset combined pituitary hormone deficiency (CPHD) has a wide spectrum of etiologies and genetic causes for congenital disease. We aimed to describe the clinical spectrum and genetic etiologies of CPHD in a single tertiary center and estimate the population-level incidence of congenital CPHD. Methods: The retrospective clinical cohort comprised 124 CPHD patients (48 with congenital CPHD) treated at the Helsinki University Hospital (HUH) Children's Hospital between 1985 and 2018. Clinical data were collected from the patient charts. Whole exome sequencing was performed in 21 patients with congenital CPHD of unknown etiology. Findings: The majority (61%;76/124) of the patients had acquired CPHD, most frequently due to craniopharyngiomas and gliomas. The estimated incidence of congenital CPHD was 1/16 000 (95%CI, 1/11 000-1/24 000). The clinical presentation of congenital CPHD in infancy included prolonged/severe neonatal hypoglycaemia, prolonged jaundice, and/or micropenis/bilateral cryptorchidism in 23 (66%) patients; despite these clinical cues, only 76% of them were referred to endocrine investigations during the first year of life. The median delay between the first violation of the growth screening rules and the initiation of GH Rx treatment among all congenital CPHD patients was 2·2 years, interquartile range 1·2-3·7 years. Seven patients harbored pathogenic variants in PROP1, SOX3, TBC1D32, OTX2, and SOX2, and one patient carried a likely pathogenic variant in SHH (c.676G>A, p.(Ala226Thr)). Interpretation: Our study suggests that congenital CPHD can occur in 1/16 000 children, and that patients frequently exhibit neonatal cues of hypopituitarism and early height growth deflection. These results need to be corroborated in future studies and might inform clinical practice. Funding: Päivikki and Sakari Sohlberg Foundation, Biomedicum Helsinki Foundation, and Emil Aaltonen Foundation research grants.

3.
Sci Rep ; 11(1): 23297, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857814

RESUMEN

Accumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006-Retrospectively registered, https://clinicaltrials.gov/show/NCT00298337 . The adult-comparison cohort (HELMi) is NCT03996304.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Pubertad/fisiología , Caracteres Sexuales , Adolescente , Clostridiaceae , Estudios de Cohortes , Estrógenos/metabolismo , Heces/microbiología , Femenino , Finlandia , Humanos , Masculino , Ruminococcus , Encuestas y Cuestionarios
4.
Lancet Child Adolesc Health ; 3(2): 109-120, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30612946

RESUMEN

BACKGROUND: The treatment of constitutional delay of growth and puberty (CDGP) is an underinvestigated area in adolescent medicine. We tested the hypothesis that peroral aromatase inhibition with letrozole is more efficacious than intramuscular injection of low-dose testosterone in inducing puberty in boys with CDGP. METHODS: We did a randomised, controlled, open-label trial at four paediatric centres in Finland. Boys aged at least 14 years with CDGP who wanted medical intervention and exhibited the first signs of puberty were randomly assigned in blocks of ten to receive either six intramuscular injections of low-dose testosterone (about 1 mg/kg bodyweight) every 4 weeks for 6 months or peroral letrozole 2·5 mg once daily for 6 months. All boys were followed up for 6 months after the end of treatment. The primary outcomes were changes in testicular volume and hormonal markers of puberty at 6 months after treatment initiation, which were assessed in all participants who received the assigned treatment. All patients were included in the safety analysis. This study is registered with ClinicalTrials.gov, number NCT01797718. FINDINGS: Between Aug 1, 2013, and Jan 30, 2017, 30 boys were randomly assigned to receive testosterone (n=15) or letrozole (n=15). One boy in the testosterone group was excluded from the primary analyses because of a protocol deviation. During treatment, boys in the letrozole group had higher serum concentrations of luteinising hormone, follicle-stimulating hormone, testosterone, and inhibin B than did boys in the testosterone group. Testicular growth from baseline to 6 months was greater in the letrozole group than in the testosterone group (7·2 mL [95% CI 5·2-9·3] vs 2·2 mL [1·4-2·9]; between-group difference per month 0·9 mL [95% CI 0·6-1·2], p<0·0001). Most adverse events were mild. One boy in the testosterone group had aggressive behaviour for 1 week after each injection, and one boy in the letrozole group had increased irritability at 6 months. INTERPRETATION: Letrozole might be a feasible alternative treatment to low-dose testosterone for boys with CDGP who opt for medical intervention. However, the risks and benefits of manipulating the reproductive axis during early puberty should be weighed carefully. FUNDING: Helsinki University Hospital, Academy of Finland, and Finnish Foundation for Pediatric Research.


Asunto(s)
Andrógenos/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Letrozol/uso terapéutico , Pubertad Tardía/tratamiento farmacológico , Testosterona/uso terapéutico , Adolescente , Andrógenos/administración & dosificación , Andrógenos/efectos adversos , Inhibidores de la Aromatasa/efectos adversos , Biomarcadores/sangre , Esquema de Medicación , Hormonas/sangre , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Inyecciones Intramusculares , Masculino , Pubertad Tardía/sangre , Testículo/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/efectos adversos , Resultado del Tratamiento
5.
Artículo en Inglés | MEDLINE | ID: mdl-28878739

RESUMEN

INTRODUCTION: We describe the etiology, MRI findings, and growth patterns in girls who had presented with signs of precocious puberty (PP), i.e., premature breast development or early menarche. Special attention was paid to the diagnostic findings in 6- to 8-year-olds. MATERIALS AND METHODS: We reviewed the medical records of 149 girls (aged 0.7-10.3 years) who had been evaluated for PP in the Helsinki University Hospital between 2001 and 2014. RESULTS: In 6- to 8-year-old girls, PP was most frequently caused by idiopathic gonadotropin-releasing hormone (GnRH)-dependent PP (60%) and premature thelarche (PT; 39%). The former subgroup grew faster (8.7 ± 2.0 cm/year, n = 58) than the girls with PT (7.0 ± 1.1 cm/year, n = 32) (P < 0.001), and the best discrimination for GnRH-dependent PP was achieved with a growth velocity cut-off value of 7.0 cm/year (sensitivity 92% and specificity 58%) [area under the curve 0.82, 95% confidence interval (CI) 0.73-0.91, P < 0.001]. Among asymptomatic and previously healthy 6- to 8-year-old girls with GnRH-dependent PP, one (1.7%, 95% CI 0.3-9.7%) had a pathological brain MRI finding requiring surgical intervention (craniopharyngioma). In girls younger than 3 years, the most frequent cause of breast development was PT, and, in 3- to 6-year-olds, GnRH-dependent PP. CONCLUSION: In 6- to 8-year-old girls, analysis of growth velocity is helpful in differentiating between PT and GnRH-dependent PP. Although the frequency of clinically relevant intracranial findings in previously healthy, asymptomatic 6- to 8-year-old girls was low, they can present without any signs or symptoms, which favors routine MRI imaging also in this age group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA