Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Chemosphere ; 354: 141722, 2024 Apr.
Article En | MEDLINE | ID: mdl-38494004

Nickel (Ni) is an essential element, but it can be phytotoxic in high concentration, which may be caused by high availability in soil solution. The objective of this study was to evaluate the effect of sources and doses of Ni applied to a dystrophic Red Latosol cultivated with sorghum on i) the availability of the metal in the soil; ii) the impact on biological and biochemical properties of the soil; iii) the absorption and distribution in sorghum plants; and iv) crop productivity. The experiment was carried out within a completely randomized design with two nickel sources [nickel(II) nitrate, Ni(NO3)2 and nickel(III) oxide, Ni2O3], three doses (35, 70, and 140 mg Ni kg-1 soil), plus controls without Ni, with 3 replications. The concentrations of Ni in the soil, soil microbial biomass (SMB), basal soil respiration (BSR), metabolic quotient (qCO2), fluorescein diacetate (FDA) hydrolysis, and urease activity were determined. The concentrations of Ni in the leaf diagnostic and in the plant (shoot, root, and grains) were also measured. In the soil, the concentrations of available Ni remained between 0.21 and 54.01 mg Ni kg-1. Ni2O3 contributed very little to the increase in available Ni. SMB and the FDA hydrolysis were not affected by the Ni source or Ni dose, but BSR and qCO2 had significant increase with Ni application rates, suggesting the soil microorganisms faced stress. Soil urease activity was affected by Ni dose but not by Ni source. The dose of Ni as Ni(NO3)2 decreased the metal concentration in the plant, while that of Ni2O3 increased it. Nickel source did not affect dry mass production of the plants, but grain yield was affected in a dose-dependent manner when Ni2O3 was the source of Ni.


Soil Pollutants , Sorghum , Soil Pollutants/analysis , Nickel/chemistry , Sorghum/metabolism , Soil/chemistry , Urease/metabolism , Plants/metabolism
2.
Environ Pollut ; 347: 123661, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38417605

Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.


Rivers , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Water Quality , Soil
...