Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Article En | MEDLINE | ID: mdl-38847828

Reliable dosimetry systems are crucial for radiobiological experiments either to quantify the biological consequences of ionizing radiation or to reproduce results by other laboratories. Also, they are essential for didactic purposes in the field of radiation research. Professional dosemeters are expensive and difficult to use in exposure facilities with closed exposure chambers. Consequently, a simple, inexpensive, battery-driven dosemeter was developed that can be easily built using readily available components. Measurements were performed to validate its readout with photons of different energy and dose rate and to demonstrate the applicability of the dosemeter. It turned out that the accuracy of the dose measurements using the developed dosemeter was better than 10%, which is satisfactory for radiobiological experiments. It is concluded that this dosemeter can be used both for determining the dose rates of an exposure facility and for educational purposes.

2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38279352

Specifying the role of genetic mutations in cancer development is crucial for effective screening or targeted treatments for people with hereditary cancer predispositions. Our goal here is to find the relationship between a number of cancerogenic mutations and the probability of cancer induction over the lifetime of cancer patients. We believe that the Avrami-Dobrzynski biophysical model can be used to describe this mechanism. Therefore, clinical data from breast and ovarian cancer patients were used to validate this model of cancer induction, which is based on a purely physical concept of the phase-transition process with an analogy to the neoplastic transformation. The obtained values of model parameters established using clinical data confirm the hypothesis that the carcinogenic process strongly follows fractal dynamics. We found that the model's theoretical prediction and population clinical data slightly differed for patients with the age below 30 years old, and that might point to the existence of an ancillary protection mechanism against cancer development. Additionally, we reveal that the existing clinical data predict breast or ovarian cancers onset two years earlier for patients with BRCA1/2 mutations.


Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/epidemiology , Mutation , Genetic Predisposition to Disease , Breast Neoplasms/genetics
3.
PLoS One ; 18(6): e0286902, 2023.
Article En | MEDLINE | ID: mdl-37307266

DNA double strand breaks (DSBs) are a deleterious form of DNA damage. Densely ionising alpha radiation predominantly induces complex DSBs and sparsely ionising gamma radiation-simple DSBs. We have shown that alphas and gammas, when applied simultaneously, interact in producing a higher DNA damage response (DDR) than predicted by additivity. The mechanisms of the interaction remain obscure. The present study aimed at testing whether the sequence of exposure to alphas and gammas has an impact on the DDR, visualised by live NBS1-GFP (green fluorescent protein) focus dynamics in U2OS cells. Focus formation, decay, intensity and mobility were analysed up to 5 h post exposure. Focus frequencies directly after sequential alpha → gamma and gamma → alpha exposure were similar to gamma alone, but gamma → alpha foci quickly declined below the expected values. Focus intensities and areas following alpha alone and alpha → gamma were larger than after gamma alone and gamma → alpha. Focus movement was most strongly attenuated by alpha → gamma. Overall, sequential alpha → gamma exposure induced the strongest change in characteristics and dynamics of NBS1-GFP foci. Possible explanation is that activation of the DDR is stronger when alpha-induced DNA damage precedes gamma-induced DNA damage.


Alpha Particles , Records , Gamma Rays , DNA Breaks, Double-Stranded , DNA Damage , Green Fluorescent Proteins
4.
Int J Radiat Biol ; 99(8): 1248-1256, 2023.
Article En | MEDLINE | ID: mdl-36731443

PURPOSE: Different alpha exposure setups are often used to study the relation between biological responses and LET. This study aimed to estimate the dose heterogeneity and uncertainty in four exposure setups using Geant4 and PARTRAC codes. The importance of the irradiation system characteristics was shown in the context of reporting experimental results, especially in radiobiological studies at the molecular level. MATERIALS AND METHODS: Geant4 was used to estimate the dose distributions in cells grown on a disk exposed to alpha particles penetrating from above and below. The latter setup was simulated without and with a collimator. PARTRAC was used for the validation of Geant4 simulations based on distributions of the number of alpha particles penetrating a round nucleus and the deposited energy. RESULTS: The LET distributions obtained for simulated setups excluding the collimator were wide and non-Gaussian. Using a collimator resulted in a Gaussian LET distribution, but strongly reduced dose rate and dose homogeneity. Comparison between PARTRAC and Geant4 calculations for the cell nucleus exposed to alpha radiation showed an excellent agreement. CONCLUSIONS: The interpretation of results from radiobiological experiments with alpha particles should always cover the characteristics of the experimental setup, which can be done precisely with computational methods.


Alpha Particles , Linear Energy Transfer , Monte Carlo Method , Radiobiology/methods , Cell Nucleus
5.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36361653

Predicting the risk of second malignant neoplasms is complicated by uncertainties regarding the shape of the dose-response relationship at high doses. Limited understanding of the competitive relationship between cell killing and the accumulation of DNA lesions at high doses, as well as the effects of other modulatory factors unique to radiation exposure during radiotherapy, such as dose heterogeneity across normal tissue and dose fractionation, contribute to these uncertainties. The aim of this study was to analyze the impact of fractionated irradiations on two cell systems, focusing on the endpoints relevant for cancer induction. To simulate the heterogeneous dose distribution across normal tissue during radiotherapy, exponentially growing VH10 fibroblasts and AHH-1 lymphoblasts were irradiated with 9 and 12 fractions (VH10) and 10 fractions (AHH-1) at 0.25, 0.5, 1, or 2 Gy per fraction. The effects on cell growth, cell survival, radiosensitivity and the accumulation of residual DNA damage lesions were analyzed as functions of dose per fraction and the total absorbed dose. Residual γH2AX foci and other DNA damage markers (micronuclei, nuclear buds, and giant nuclei) were accumulated at high doses in both cell types, but in a cell type-dependent manner. The competitive relationship between cell killing and the accumulation of carcinogenic DNA damage following multifractional radiation exposure is cell type-specific.


DNA Damage , Radiation Exposure , Dose-Response Relationship, Radiation , Radiation Tolerance/physiology , Dose Fractionation, Radiation
6.
Radiat Environ Biophys ; 61(4): 545-559, 2022 11.
Article En | MEDLINE | ID: mdl-36220965

The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.


Radiation Exposure , Radiation, Ionizing , Monte Carlo Method , DNA Damage , Chromatin
7.
Radiat Environ Biophys ; 61(4): 639-650, 2022 11.
Article En | MEDLINE | ID: mdl-36098819

Exosomes are spherical membrane nanovesicles secreted from cells, and they play an important role in tumor immune response, metastasis, angiogenesis, and survival. Studies investigating exosomes isolated from cells exposed to photon radiation commonly used in conventional radiotherapy demonstrate the influence of this type of radiation on exosome characteristics and secretion. There is currently no research investigating the effects of densely ionizing particles such as protons and alpha radiation on exosomes. Thus we have evaluated the cellular response of human prostate cancer cells exposed to 0, 2, and 6 Gy of alpha radiation emitted from the Am-241 source. Irradiated PC3 and DU145 cell lines, characterized by differences in radiosensitivity, were studied using apoptosis, LDH, and IL-6 assays. Additionally, the corresponding concentration and size of isolated exosomes were measured using NTA. We found that exposure to ionizing radiation resulted in gross changes in viability and cell damage. There were increased amounts of apoptotic or necrotic cells as a function of radiation dose. We demonstrated that irradiated PC3 cells secrete higher quantities of exosomes compared to DU145 cells. Additionally, we also found no statistical difference in exosome size for control and irradiated cells.


Exosomes , Male , Humans , Exosomes/metabolism , Alpha Particles , PC-3 Cells , Radiation Tolerance , Cell Line, Tumor
8.
Int J Radiat Biol ; 95(9): 1251-1258, 2019 09.
Article En | MEDLINE | ID: mdl-31140900

Purpose: Dose assessment plays an important role in case of radiological accidents and can be performed by scoring structural changes of chromosome morphology induced in cells by ionizing radiation. The results of such a test are biased by scorer experience, therefore, simple to learn assays are recommended to be used when fast analysis of a large amount of data is needed. The aim of this study was to compare the performance of two radiobiological assays - chromosomal aberrations and micronuclei - by unexperienced scorers with the reference values generated by an expert. Materials and methods: Each participant of an EU-funded two-week radiobiology course was asked to score Chinese hamster ovary cells exposed to gamma radiation up to 4 Gy. The congruence of students' and expert's scores at each dose and the coherence of the dose-response curve parameters between the students were investigated. Results: Micronucleus test tended to be faster and easier to learn than scoring chromosomal aberrations. However, both assays carried out by inexperienced students showed reasonable dose-response curves. Conclusions: In the case of a large radiological accident involving many casualties, the unexperienced scorers would support the process of biodosimetric triage by cytogenetic biological dosimetry.


Chromosome Aberrations/radiation effects , Micronucleus Tests/standards , Statistics as Topic/methods , Dose-Response Relationship, Radiation , Reference Values
9.
Radiat Environ Biophys ; 58(1): 109-117, 2019 03.
Article En | MEDLINE | ID: mdl-30673853

The clonogenic cell survival assay is a basic method to study the cytotoxic effect of radiation and chemical toxins. In large experimental setups, counting of colonies by eye is tiresome and prone to bias. Moreover, it is often interesting to quantify the size of individual colonies. Such analyses are largely facilitated by computerised image analysis systems. Although a number of such systems exist, they all focus on enumerating colonies and not on analysing the colony size. We have developed a new software package for both counting colonies and plotting their size distributions. The software called count and Plot HIstograms of Colony Size (countPHICS) consists of two parts: (1) a macro written for ImageJ which analyses computerised images of cell culture dishes or 6-well plates, counts colonies, estimates their size and saves the results in a text file; (2) a program written with QT Creator which reads the text file, plots histograms of colony size distribution and fits the best function. The full program is freely available at: http://www.fuw.edu.pl/~bbrzozow/FizMed/countPHICS.html . In conclusion, our new publically available software will facilitate colony counting and provide additional information on the colony growth rate, which is relevant especially for radiosensitisation studies.


Computational Biology/methods , Software , Animals , Cell Count , Cell Line, Tumor , Cell Survival , Humans
10.
Radiother Oncol ; 124(1): 80-88, 2017 07.
Article En | MEDLINE | ID: mdl-28587761

PURPOSE: Respiratory motion-management techniques (MMT) aim to ensure tumor dose coverage while sparing lung tissue. Dynamic treatment-couch tracking of the moving tumor is a promising new MMT and was compared to the internal-target-volume (ITV) concept, the mid-ventilation (MidV) principle and the gating approach in a planning study based on 4D dose calculations. METHODS: For twenty patients with lung lesions, planning target volumes (PTV) were adapted to the MMT and stereotactic body radiotherapy treatments were prepared with the 65%-isodose enclosing the PTV. For tracking, three concepts for target volume definition were considered: Including the gross tumor volume of one phase (single-phase tracking), including deformations between phases (multi-phase tracking) and additionally including tracking latencies of a couch tracking system (reliable couch tracking). The accumulated tumor and lung doses were estimated with 4D dose calculations based on 4D-CT datasets and deformable image registration. RESULTS: Single-phase tracking showed the lowest ipsilateral lung Dmean (median: 3.3Gy), followed by multi-phase tracking, gating, reliable couch tracking, MidV and ITV concepts (3.6, 3.8, 4.1, 4.3 and 4.8Gy). The 4D dose calculations showed the MidV and single-phase tracking overestimated the target mean dose (-2.3% and -1.3%), while it was slightly underestimated by the other MMT (<+1%). CONCLUSION: The ITV concept ensures tumor coverage, but exposes the lung tissue to a higher dose. The MidV, gating and tracking concepts were shown to reduce the lung dose. Neglecting non-translational changes of the tumor in the target volume definition for tracking results in a slightly reduced target coverage. The slightly inferior dose coverage for MidV should be considered when applying this technique clinically.


Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Respiratory Mechanics/physiology , Four-Dimensional Computed Tomography/methods , Humans , Lung Neoplasms/physiopathology , Radiosurgery/methods , Radiotherapy Dosage
...