Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083200

RESUMEN

Federated learning (FL) has attracted attention as a technology that allows multiple medical institutions to collaborate on AI without disclosing each other's patient data. However, FL has the challenge of being unable to robustly learn when the data of participating clients is non-independently and non-identically distributed (Non-IID). Personalized Federated Learning (PFL), which constructs a personalized model for each client, has been proposed as a solution to this problem. However, conventional PFL methods do not ensure the interpretability of personalization, specifically, the identification of which data samples are contributed to each personalized learning, which is important for AI in medical applications. In this study, we propose a novel PFL framework, Federated Adjustment of Covariate (FedCov), which acquires a propensity score model representing the covariate shift among clients through prior FL, then learns a final model by weighting the contribution of each training sample to PFL based on the estimated propensity score. This approach enables both the learning of personalized models through covariate adjustment and the visualization of the contribution of each client to PFL. FedCov was evaluated in the prediction of in-hospital mortality across 50 hospitals in the eICU Collaborative Research Database, achieving an ROC-AUC of 0.750. This result outperformed the AUCs in the 0.720-0.735 range achieved by conventional FL methods and was closest to the AUC of 0.754 achieved by centralized learning.Clinical Relevance- This study demonstrates the feasibility of providing sophisticated and personalized AI-driven clinical decision support to any medical institution through personalized federated learning.


Asunto(s)
Registros Electrónicos de Salud , Aprendizaje , Humanos , Hospitales , Área Bajo la Curva , Bases de Datos Factuales
2.
J Biomed Inform ; 129: 104001, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101638

RESUMEN

Electronic health record (EHR) data are increasingly used to develop prediction models to support clinical care, including the care of patients with common chronic conditions. A key challenge for individual healthcare systems in developing such models is that they may not be able to achieve the desired degree of robustness using only their own data. A potential solution-combining data from multiple sources-faces barriers such as the need for data normalization and concerns about sharing patient information across institutions. To address these challenges, we evaluated three alternative approaches to using EHR data from multiple healthcare systems in predicting the outcome of pharmacotherapy for type 2 diabetes mellitus(T2DM). Two of the three approaches, named Selecting Better (SB) and Weighted Average(WA), allowed the data to remain within institutional boundaries by using pre-built prediction models; the third, named Combining Data (CD), aggregated raw patient data into a single dataset. The prediction performance and prediction coverage of the resulting models were compared to single-institution models to help judge the relative value of adding external data and to determine the best method to generate optimal models for clinical decision support. The results showed that models using WA and CD achieved higher prediction performance than single-institution models for common treatment patterns. CD outperformed the other two approaches in prediction coverage, which we defined as the number of treatment patterns predicted with an Area Under Curve of 0.70 or more. We concluded that 1) WA is an effective option for improving prediction performance for common treatment patterns when data cannot be shared across institutional boundaries and 2) CD is the most effective approach when such sharing is possible, especially for increasing the range of treatment patterns that can be predicted to support clinical decision making.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Diabetes Mellitus Tipo 2 , Enfermedad Crónica , Toma de Decisiones Clínicas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Registros Electrónicos de Salud , Humanos
3.
JAMIA Open ; 4(3): ooab041, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34345802

RESUMEN

OBJECTIVE: To establish an enterprise initiative for improving health and health care through interoperable electronic health record (EHR) innovations. MATERIALS AND METHODS: We developed a unifying mission and vision, established multidisciplinary governance, and formulated a strategic plan. Key elements of our strategy include establishing a world-class team; creating shared infrastructure to support individual innovations; developing and implementing innovations with high anticipated impact and a clear path to adoption; incorporating best practices such as the use of Fast Healthcare Interoperability Resources (FHIR) and related interoperability standards; and maximizing synergies across research and operations and with partner organizations. RESULTS: University of Utah Health launched the ReImagine EHR initiative in 2016. Supportive infrastructure developed by the initiative include various FHIR-related tooling and a systematic evaluation framework. More than 10 EHR-integrated digital innovations have been implemented to support preventive care, shared decision-making, chronic disease management, and acute clinical care. Initial evaluations of these innovations have demonstrated positive impact on user satisfaction, provider efficiency, and compliance with evidence-based guidelines. Return on investment has included improvements in care; over $35 million in external grant funding; commercial opportunities; and increased ability to adapt to a changing healthcare landscape. DISCUSSION: Key lessons learned include the value of investing in digital innovation initiatives leveraging FHIR; the importance of supportive infrastructure for accelerating innovation; and the critical role of user-centered design, implementation science, and evaluation. CONCLUSION: EHR-integrated digital innovation initiatives can be key assets for enhancing the EHR user experience, improving patient care, and reducing provider burnout.

4.
Methods Inf Med ; 60(S 01): e32-e43, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33975376

RESUMEN

OBJECTIVES: Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI. METHODS: Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results. RESULTS: The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah. CONCLUSION: A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Diabetes Mellitus Tipo 2 , Inteligencia Artificial , Enfermedad Crónica , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Registros Electrónicos de Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...