Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673458

RESUMEN

Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around -56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (-48.2 ± 0.8 to -52.9 ± 1.9 mV) and a high encapsulation efficiency (quercetin: 79.6%). The emulsion stability was measured at different levels of T-ChNCs and pH values. The droplet size and zeta potential decreased with longer storage periods. The emulsions formed by T-ChNCs retarded the release of quercetin at half rate of that of the quercetin ethanol solution. These findings indicated that T-ChNCs are a promising candidate for effectively stabilizing Pickering emulsions and controlling release of quercetin.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322538

RESUMEN

Neural network (i.e. deep learning, NN)-based data analysis techniques have been listed as a pivotal opportunity to protect the integrity and safety of the global food supply chain and forecast $11.2 billion in agriculture markets. As a general-purpose data analytic tool, NN has been applied in several areas of food science, such as food recognition, food supply chain security and omics analysis, and so on. Therefore, given the rapid emergence of NN applications in food safety, this review aims to provide a comprehensive overview of the NN application in food analysis for the first time, focusing on domain-specific applications in food analysis by introducing fundamental methodology, reviewing recent and notable progress, and discussing challenges and potential pitfalls. NN demonstrated that it has a bright future through effective collaboration between food specialist and the broader community in the food field, for example, superiority in food recognition, sensory evaluation, pattern recognition of spectroscopy and chromatography. However, major challenges impeded NN extension including void in the food scientist-friendly interface software package, incomprehensible model behavior, multi-source heterogeneous data, and so on. The breakthrough from other fields proved NN has the potential to offer a revolution in the immediate future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...