Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Exp Neurol ; 370: 114580, 2023 12.
Article En | MEDLINE | ID: mdl-37884187

The subiculum, a key output region of the hippocampus, is increasingly recognized as playing a crucial role in seizure initiation and spread. The subiculum consists of glutamatergic pyramidal cells, which show alterations in intrinsic excitability in the course of epilepsy, and multiple types of GABAergic interneurons, which exhibit varying characteristics in epilepsy. In this study, we aimed to assess the role of the vasoactive intestinal peptide interneurons (VIP-INs) of the ventral subiculum in the pathophysiology of temporal lobe epilepsy. We observed that an anatomically restricted inhibition of VIP-INs of the ventral subiculum was sufficient to reduce seizures in the intrahippocampal kainic acid model of epilepsy, changing the circadian rhythm of seizures, emphasizing the critical role of this small cell population in modulating TLE. As we expected, permanent unilateral or bilateral silencing of VIP-INs of the ventral subiculum in non-epileptic animals did not induce seizures or epileptiform activity. Interestingly, transient activation of VIP-INs of the ventral subiculum was enough to increase the frequency of seizures in the acute seizure model. Our results offer new perspectives on the crucial involvement of VIP-INs of the ventral subiculum in the pathophysiology of TLE. Given the observed predominant disinhibitory role of the VIP-INs input in subicular microcircuits, modifications of this input could be considered in the development of therapeutic strategies to improve seizure control.


Epilepsy, Temporal Lobe , Epilepsy , Animals , Epilepsy, Temporal Lobe/chemically induced , Kainic Acid/toxicity , Vasoactive Intestinal Peptide , Seizures/chemically induced , Interneurons/physiology , Hippocampus
2.
Mol Metab ; 76: 101790, 2023 10.
Article En | MEDLINE | ID: mdl-37562743

OBJECTIVE: One of leptin's main targets in the hypothalamus are neuropeptide Y (NPY) neurons, with selective deletion of leptin receptors (Lepr) specifically in Npy neurons resulting in major alterations of energy partitioning between fat and bone mass. However, the specific action of these Npy+/Lepr+ neurons compared to Npy-negative Lepr (Npy-/Lepr+) neurons in regard to energy homeostasis regulation is unknown. METHODS: Specific AAV viral vectors were generated using DREADD and INTRSECT technology and used in male LeprCre/+ and LeprCre/+;NpyFlp/+ mice to assess the effect of activating either all Lepr neurons or specifically Npy+/Lepr+ or Npy-/Lepr+ neurons only on feeding, energy homeostasis control, and body composition. RESULTS: Selective stimulation of Npy+/Lepr+ neurons led to an immediate decrease in respiratory quotient followed by a delayed increase in food intake in standard chow fed, but interestingly not in high fat diet (HFD) fed mice. In addition, stimulation of Npy+/Lepr+ neurons led to a robust increase in brown adipose tissue thermogenesis and improved glucose tolerance. These effects were not observed in standard chow fed mice when Npy-/Lepr+ expressing neurons were specifically activated, suggesting the effects of leptin on these parameters are driven by NPY. However, under HFD condition when leptin levels are elevated, the stimulation of the Npy-/Lepr+ neurons increased food intake, physical activity and energy expenditure. Interestingly, chronic stimulation of Npy-positive Lepr neurons was able to increase bone mass independently of bodyweight, whilst chronic stimulation of the Npy-/Lepr+ neurons resulted in increased bodyweight and fat mass with proportionate increases in bone mass. CONCLUSIONS: Together, these data indicate that leptin signalling through Npy-positive Lepr-expressing neurons controls energy partitioning via stimulation of thermogenesis, energy expenditure, and the use of fat as a fuel source. However, under prolonged HFD, leptin resistance may occur and actions of leptin signalling through Npy-negative Lepr hypothalamic neurons may exacerbate excess food intake.


Leptin , Neuropeptide Y , Mice , Male , Animals , Leptin/metabolism , Neuropeptide Y/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Neurons/metabolism , Energy Metabolism
3.
Neuron ; 111(16): 2583-2600.e6, 2023 08 16.
Article En | MEDLINE | ID: mdl-37295418

Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.


Habenula , Mice , Animals , Neural Pathways/physiology , Habenula/physiology , Hypothalamic Area, Lateral , Ventral Tegmental Area , Neurons/physiology
4.
Cell Metab ; 35(6): 979-995.e7, 2023 06 06.
Article En | MEDLINE | ID: mdl-37201523

Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.


Leptin , Pro-Opiomelanocortin , Mice , Animals , Leptin/metabolism , Pro-Opiomelanocortin/metabolism , Neuropeptide Y/metabolism , Agouti-Related Protein/metabolism , Neurons/metabolism , Arcuate Nucleus of Hypothalamus , Obesity/metabolism
5.
Nat Commun ; 13(1): 5944, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209152

The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain's clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants.


Dopamine , Hypothalamus , Animals , Dopamine/physiology , Mice , Neurons/physiology , Somatostatin , Suprachiasmatic Nucleus/physiology
6.
Mol Metab ; 59: 101455, 2022 05.
Article En | MEDLINE | ID: mdl-35167990

OBJECTIVE: Aguti-related protein (AGRP) neurons in the arcuate nucleus of the hypothalamus (ARC), which co-express neuropeptide Y (NPY), are key regulators of feeding and energy homeostasis. However, the precise role NPY has within these neurons and the specific pathways that it control are still unclear. In this article, we aimed to determine what aspects of feeding behaviour and energy homeostasis are controlled by NPY originating from AGRP neurons and which Y-receptor pathways are utilised to fulfil this function. METHODS: Novel conditional Agrpcre/+;Npylox/lox knockout mice were generated and comprehensively phenotyped, both under standard chow as well as high-fat-diet conditions. Designer receptor exclusively activated by designer drugs (DREADD) technology was used to assess the altered responses on feeding and energy homeostasis control in the absence of NPY in these neurons. Rescue experiments utilising Npy1r- and Npy2r-selective NPY ligands were performed to assess which component of the energy homeostasis control is dependent by which specific Y-receptor pathway. RESULTS: We show that the specific deletion of Npy only in AGRP neurons leads to a paradoxical mild obese phenotype associated with reduced locomotion and energy expenditure and increased feeding and Respiratory Quotient (RQ) that remain elevated under a positive energy balance. The activation of Npy-deficient AGRP neurons via DREADD's is still able to drive feeding, yet with a delayed onset. Additionally, Clozapine-N-oxide (CNO) treatment reduces locomotion without impacting on energy expenditure. Rescue experiments re-introducing Npy1r- and Npy2r-selective NPY ligands revealed that the increased feeding and RQ are mostly driven by Npy1r, whereas energy expenditure and locomotion are controlled by Npy2r signalling. CONCLUSION: Together, these results demonstrate that NPY originating from AGRP neurons is not only critical to initiate but also for continuously driving feeding, and we for the first time identify which Y-receptor controls which pathway.


Energy Metabolism , Neuropeptide Y , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Ligands , Mice , Neurons/metabolism , Neuropeptide Y/metabolism
7.
Front Synaptic Neurosci ; 13: 635726, 2021.
Article En | MEDLINE | ID: mdl-34122036

Disproportionate, maladapted, and generalized fear are essential hallmarks of posttraumatic stress disorder (PTSD), which develops upon severe trauma in a subset of exposed individuals. Among the brain areas that are processing fear memories, the hippocampal formation exerts a central role linking emotional-affective with cognitive aspects. In the hippocampus, neuronal excitability is constrained by multiple GABAergic interneurons with highly specialized functions and an extensive repertoire of co-released neuromodulators. Neuropeptide Y (NPY) is one of these co-transmitters that significantly affects hippocampal signaling, with ample evidence supporting its fundamental role in emotional, cognitive, and metabolic circuitries. Here we investigated the role of NPY in relation to GABA, both released from the same interneurons of the dorsal dentate gyrus (DG), in different aspects of fear conditioning. We demonstrated that activation of dentate GABA neurons specifically during fear recall reduced cue-related as well as trace-related freezing behavior, whereas inhibition of the same neurons had no significant effects. Interestingly, concomitant overexpression of NPY in these neurons did not further modify fear recall, neither under baseline conditions nor upon chemogenetic stimulation. However, potentially increased co-release of NPY substantially reduced contextual fear, promoted extinction learning, and long-term suppression of fear in a foreground context-conditioning paradigm. Importantly, NPY in the dorsal DG was not only expressed in somatostatin neurons, but also in parvalbumin-positive basket cells and axoaxonic cells, indicating intense feedback and feedforward modulation of hippocampal signaling and precise curtailing of neuronal engrams. Thus, these findings suggest that co-release of NPY from specific interneuron populations of the dorsal DG modifies dedicated aspects of hippocampal processing by sharpening the activation of neural engrams and the consecutive fear response. Since inappropriate and generalized fear is the major impediment in the treatment of PTSD patients, the dentate NPY system may be a suitable access point to ameliorate PTSD symptoms and improve the inherent disease course.

8.
Elife ; 92020 10 19.
Article En | MEDLINE | ID: mdl-33074102

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.


Research in biology generates many image datasets, mostly from microscopy. These images have to be analyzed, and much of this analysis relies on a human expert looking at the images and manually annotating features. Image datasets are often large, and human annotation can be subjective, so automating image analysis is highly desirable. This is where machine learning algorithms, such as deep learning, have proven to be useful. In order for deep learning algorithms to work first they have to be 'trained'. Deep learning algorithms are trained by being given a training dataset that has been annotated by human experts. The algorithms extract the relevant features to look out for from this training dataset and can then look for these features in other image data. However, it is also worth noting that because these models try to mimic the annotation behavior presented to them during training as well as possible, they can sometimes also mimic an expert's subjectivity when annotating data. Segebarth, Griebel et al. asked whether this was the case, whether it had an impact on the outcome of the image data analysis, and whether it was possible to avoid this problem when using deep learning for imaging dataset analysis. For this research, Segebarth, Griebel et al. used microscopy images of mouse brain sections, where a protein called cFOS had been labeled with a fluorescent tag. This protein typically controls the rate at which DNA information is copied into RNA, leading to the production of proteins. Its activity can be influenced experimentally by testing the behaviors of mice. Thus, this experimental manipulation can be used to evaluate the results of deep learning-based image analyses. First, the fluorescent images were interpreted manually by a group of human experts. Then, their results were used to train a large variety of deep learning models. Models were trained either on the results of an individual expert or on the results pooled from all experts to come up with a consensus model, a deep learning model that learned from the personal annotation preferences of all experts. This made it possible to test whether training a model on multiple experts reduces the risk of subjectivity. As the training of deep learning models is random, Segebarth, Griebel et al. also tested whether combining the predictions from multiple models in a so-called model ensemble improves the consistency of the analyses. For evaluation, the annotations of the deep learning models were compared to those of the human experts, to ensure that the results were not influenced by the subjective behavior of one person. The results of all bioimage annotations were finally compared to the experimental results from analyzing the mice's behaviors in order to check whether the models were able to find the behavioral effect on cFOS. Segebarth, Griebel et al. concluded that combining the expert knowledge of multiple experts reduces the subjectivity of bioimage annotation by deep learning algorithms. Combining such consensus information in a group of deep learning models improves the quality of bioimage analysis, so that the results are reliable, transparent and less subjective.


Image Processing, Computer-Assisted/methods , Animals , Deep Learning , Fear , Fluorescent Dyes , Male , Mice , Reproducibility of Results , Signal-To-Noise Ratio , Zebrafish
9.
Neuron ; 104(4): 781-794.e4, 2019 11 20.
Article En | MEDLINE | ID: mdl-31543297

Associative learning is thought to involve different forms of activity-dependent synaptic plasticity. Although previous studies have mostly focused on learning-related changes occurring at excitatory glutamatergic synapses, we found that associative learning, such as fear conditioning, also entails long-lasting functional and structural plasticity of GABAergic synapses onto pyramidal neurons of the murine basal amygdala. Fear conditioning-mediated structural remodeling of GABAergic synapses was associated with a change in mIPSC kinetics and an increase in the fraction of synaptic benzodiazepine-sensitive (BZD) GABAA receptors containing the α2 subunit without altering the intrasynaptic distribution and overall amount of BZD-GABAA receptors. These structural and functional synaptic changes were partly reversed by extinction training. These findings provide evidence that associative learning, such as Pavlovian fear conditioning and extinction, sculpts inhibitory synapses to regulate inhibition of active neuronal networks, a process that may tune amygdala circuit responses to threats.


Association Learning/physiology , Fear/physiology , GABAergic Neurons/physiology , Neuronal Plasticity/physiology , Amygdala , Animals , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Male , Mice, Inbred C57BL , Synapses
10.
Ann N Y Acad Sci ; 1455(1): 59-80, 2019 11.
Article En | MEDLINE | ID: mdl-31271235

Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life-sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food-seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional-affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.


Fear , Hunger , Neuropeptide Y/physiology , Animals , Brain/physiology , Cholecystokinin/physiology , Corticotropin-Releasing Hormone/physiology , Ghrelin/physiology , Homeostasis , Humans , Leptin/physiology , Melanocyte-Stimulating Hormones/physiology
11.
Cell Metab ; 30(1): 111-128.e6, 2019 07 02.
Article En | MEDLINE | ID: mdl-31031093

Neuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention. Central amygdala NPY neuron-specific Npy overexpression mimics the obese phenotype seen in a combined stress and high-fat-diet model, which is prevented by the selective ablation of Npy. Using food intake and energy expenditure as readouts, we demonstrate that selective activation of central amygdala NPY neurons results in increased food intake and decreased energy expenditure. Mechanistically, it is the diminished insulin signaling capacity on central amygdala NPY neurons under combined stress and high-fat-diet conditions that leads to the exaggerated development of obesity.


Amygdala/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Obesity/metabolism , Animals , Body Temperature , Diet, High-Fat/adverse effects , Eating/physiology , Electrophysiology , Energy Metabolism/physiology , Immunohistochemistry , In Situ Hybridization, Fluorescence , Insulin/metabolism , Male , Mice , Phenotype , Real-Time Polymerase Chain Reaction
12.
Psychopharmacology (Berl) ; 236(1): 281-291, 2019 Jan.
Article En | MEDLINE | ID: mdl-30443793

RATIONALE: Return of fear by re-exposure to an aversive event is a major obstacle in the treatment of fear-related disorders. Recently, we demonstrated that local pharmacological stimulation of neuropeptide Y type 2 receptors (Y2R) in anteroventral bed nucleus of stria terminalis (BNSTav) facilitates fear extinction and attenuates retrieval of remote fear with or without concomitant extinction training. Whether Y2R activation could also protect against re-exposure to traumatic events is still unknown. OBJECTIVE: Therefore, we investigated reinstatement of remote fear following early Y2R manipulation in BNSTav in relation to concomitant extinction training in mice. METHODS: We combined local pharmacological manipulation of Y2Rs in BNSTav with or without extinction training and tested for reinstatement of remote fear 15 days later. Furthermore, we employed immediate early gene mapping to monitor related local brain activation. RESULTS: Y2R stimulation by local injection of NPY3-36 into BNSTav facilitated extinction, reduced fear reinstatement at remote stages, and mimicked the influence of extinction in groups without prior extinction training. In contrast, Y2R antagonism (JNJ-5207787) delayed extinction and increased reinstatement. Y2R treatment immediately before remote fear tests had no effect. Concomitantly, Y2R activation at early time points reduced the number of c-Fos positive neurons in BNSTav during testing of reinstated remote fear. CONCLUSION: Local Y2R stimulation in BNSTav promotes fear extinction and stabilizes suppression of reinstated fear through a long-term influence, even without extinction training. Thus, Y2Rs in BNST are crucial pharmacological targets for extinction-based remote fear suppression.


Extinction, Psychological/physiology , Fear/physiology , Neuropeptide Y/administration & dosage , Peptide Fragments/administration & dosage , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/biosynthesis , Septal Nuclei/metabolism , Acrylamides/administration & dosage , Animals , Extinction, Psychological/drug effects , Fear/drug effects , Infusions, Intraventricular , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Piperidines/administration & dosage , Receptors, Neuropeptide Y/antagonists & inhibitors , Septal Nuclei/drug effects
13.
Neuropharmacology ; 143: 20-28, 2018 12.
Article En | MEDLINE | ID: mdl-30236962

Posttraumatic stress disorder is characterized by contextually inappropriate, dys-regulated and generalized fear expression and often resistant to therapy. The hippocampus integrates contextual information into spatial and emotional memories, but how diverse modulatory neurotransmitters are shaping this process is not known. Neuropeptide Y is a peptide-neurotransmitter, which modulates hippocampal excitability by activating several G-protein-coupled receptors. Postsynaptic Y1 receptors create strong anxiolytic and fear-suppressing behavior, while pre-synaptic Y2 receptors (Y2R) are mainly anxiogenic. The role of Y2Rs in spatial compared to emotional learning is, however, still controversial. Here we show that deletion of Y2Rs increased recall, but delayed extinction of contextual fear. Interestingly, spatial memory in the Barnes maze was enhanced during early and late testing, suggesting that Y2Rs suppress learning by hippocampal and extra-hippocampal mechanisms. To demonstrate sufficiency of hippocampal Y2Rs we performed viral vector-mediated, locally restricted re-expression of Y2Rs in the hippocampus of Y2KO mice. This treatment reduced spatial memory to the level of wildtype mice only during early, but not late recall. Furthermore, contextual fear was reduced, while induction of fear extinction appeared earlier. Our results suggest that hippocampal Y2R signaling inhibits learning in a time- and content-specific way, resulting in an early reduction of spatial memory and in a specific suppression of fear, by reducing fear recall and promoting fear extinction. We thus propose that reduction of hippocampal excitability through pre-synaptic Y2Rs may control the integration of contextual information into developing memories.


Emotions/physiology , Hippocampus/metabolism , Memory/physiology , Receptors, Neuropeptide Y/metabolism , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/cytology , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Neuropeptide Y/deficiency , Receptors, Neuropeptide Y/genetics , Space Perception/physiology , Time Factors
14.
EMBO J ; 37(21)2018 11 02.
Article En | MEDLINE | ID: mdl-30209240

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Adrenergic Neurons/metabolism , Ciliary Neurotrophic Factor/metabolism , Hypothalamus/metabolism , Locus Coeruleus/metabolism , Stress, Physiological , Adrenergic Neurons/pathology , Animals , Ciliary Neurotrophic Factor/genetics , Hypothalamus/pathology , Locus Coeruleus/pathology , Mice , Mice, Knockout , Rats
15.
Exp Eye Res ; 177: 87-95, 2018 12.
Article En | MEDLINE | ID: mdl-30076797

PURPOSE: to explore whether the NK1 and Y2 receptors are involved in the pathogenesis of laser-induced CNV (choroidal neovascularization) in C57Bl/6N mice. METHODS: CNV was induced by laser damage of Bruch's membrane and the CNV volume was determined by OCT and/or flatmount preparation. First, the development of the CNV volume over time was evaluated. Second, the CNV development in NK1- and Y2 KO mice was analyzed. Third, the effect on the development as well as the regression of CNV by intravitreal injections of the NK1 antagonist SR140333 and the Y2 antagonist BIIEO246 separately and each in combination with Eylea®, was investigated. Furthermore, flatmount CNV volume measurements were correlated to volumes obtained by the in vivo OCT technique. RESULTS: CNV volume peak was observed at day 4 after laser treatment. Compared to wild type mice, NK1 and Y2 KO mice showed significantly smaller CNV volumes. Eylea® and the Y2 antagonist significantly reduced the volume of the developing CNV. In contrast to Eylea® there was no effect of either antagonist on the regression of CNV, additionally no additive effect upon combined Eylea®/antagonist treatment was observed. There was a strong positive correlation between CNV volumes obtained by OCT and flatmount. CONCLUSION: NK1 and Y2 receptors mediate the development of laser-induced CNVs in mice. They seem to play an important role at the developmental stage of CNVs, whereas VEGF via VEGF receptor may be an important mediator throughout the CNV existence. In vivo OCT correlates with flatmount CNV volume, representing a useful tool for in vivo evaluations of CNV over time.


Choroidal Neovascularization , Receptors, Neurokinin-1/physiology , Receptors, Neuropeptide Y/physiology , Angiogenesis Inhibitors/pharmacology , Animals , Cells, Cultured , Choroid/pathology , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Fluorescein Angiography , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/deficiency , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/deficiency , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins/pharmacology
16.
Elife ; 72018 08 21.
Article En | MEDLINE | ID: mdl-30129922

Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the hypothalamus and an important regulator of energy homeostasis; however, the specific contributions of different CART neuronal populations to this process are not known. Here, we show that depolarization of mouse arcuate nucleus (Arc) CART neurons via DREADD technology decreases energy expenditure and physical activity, while it exerts the opposite effects in CART neurons in the lateral hypothalamus (LHA). Importantly, when stimulating these neuronal populations in the absence of CART, the effects were attenuated. In contrast, while activation of CART neurons in the LHA stimulated feeding in the presence of CART, endogenous CART inhibited food intake in response to Arc CART neuron activation. Taken together, these results demonstrate anorexigenic but anabolic effects of CART upon Arc neuron activation, and orexigenic but catabolic effects upon LHA-neuron activation, highlighting the complex and nuclei-specific functions of CART in controlling feeding and energy homeostasis.


Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism , Hypothalamic Area, Lateral/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Behavior, Animal , Body Temperature/drug effects , Clozapine/analogs & derivatives , Clozapine/pharmacology , Dependovirus/metabolism , Eating , Energy Metabolism/drug effects , Injections , Integrases/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurotransmitter Agents/metabolism , Physical Conditioning, Animal , Reproducibility of Results , Weight Gain/drug effects
17.
J Neurosci ; 38(31): 6983-7003, 2018 08 01.
Article En | MEDLINE | ID: mdl-29954847

In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). Among these INs are vasoactive intestinal polypeptide-expressing (VIP+) INs, which innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical, and electrophysiological criteria, VIP+ INs could be identified as IN-selective INs (IS-INs) and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ IS-INs revealed three different spiking patterns, none of which was associated with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings enabled us to identify several types of BLA INs innervated by VIP+ INs, including other IS-INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic inputs (although only 10% from other VIP+ INs) and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters.In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the evidence that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions.SIGNIFICANCE STATEMENT We provide the first comprehensive analysis of the distribution of vasoactive intestinal polypeptide-expressing (VIP+) interneurons (INs) across the entire mouse amygdaloid basolateral complex (BLA), as well as of their morphological and physiological properties. VIP+ INs in the neocortex preferentially target other INs to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA INs that, when inhibited, may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g., in fear learning.


Basolateral Nuclear Complex/cytology , Interneurons/physiology , Vasoactive Intestinal Peptide/analysis , Action Potentials , Animals , Basolateral Nuclear Complex/physiology , Cell Count , Connectome , Crosses, Genetic , Genes, Reporter , Glutamic Acid/metabolism , Inhibitory Postsynaptic Potentials/radiation effects , Interneurons/chemistry , Interneurons/classification , Interneurons/radiation effects , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Patch-Clamp Techniques , Presynaptic Terminals/ultrastructure , Receptor, Cannabinoid, CB1/analysis , Vesicular Glutamate Transport Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Neuropeptides ; 68: 90-98, 2018 Apr.
Article En | MEDLINE | ID: mdl-29530408

The mouse olfactory neuroepithelium (ON) is comprised of anatomically distinct populations of cells in separate regions; apical (sustentacular and microvillar), neuronal (olfactory sensory neurons) and basal (horizontal and globose basal cells). The existence of microvillar cells (MVCs) is well documented but their nature and function remains unclear. An important transcription factor for the differentiation of MVCs is Skn-1a, with loss of function of Skn-1a in mice resulting in a complete loss of Trpm-5 expressing MVCs, while olfactory sensory neuron differentiation is normal. Our previous research has shown that neuropeptide Y (NPY) is expressed in MVCs and is important in the neuroproliferation of olfactory precursors. This study showed that following X-ray irradiation of the snout of wildtype mice, which decreases the proliferation of basal precursor cells, the numbers of Trpm-5-positive MVCs is increased at 2 and 5 weeks post-irradiation compared to controls. Skn-1a expression in the ON following X-ray irradiation also increases at 2 weeks post-irradiation in a regionally specific manner matching the expression pattern of Trpm-5-positive MVCs. In parallel, NPYCre knock-in mice were used to examine the expression of Skn-1a following activation of NPY unilaterally in the ON (unilateral nasal irrigation of AAV-NPY-FLEX). These experiments demonstrated that Skn-1a is only expressed when NPY is activated in MVCs. Therefore the expression of NPY is necessary for the transcription factor-mediated differentiation of olfactory MVCs.


Cell Differentiation , Neuropeptide Y/metabolism , Octamer Transcription Factors/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , TRPM Cation Channels/metabolism , Animals , Gene Expression Regulation , Male , Mice, Inbred C57BL , Olfactory Mucosa/radiation effects
19.
Neurobiol Learn Mem ; 149: 144-153, 2018 03.
Article En | MEDLINE | ID: mdl-29408468

The anterior bed nucleus of stria terminalis (BNST) is involved in reinstatement of extinguished fear, and neuropeptide Y2 receptors influence local synaptic signaling. Therefore, we hypothesized that Y2 receptors in anteroventral BNST (BNSTav) interfere with remote fear memory and that previous fear extinction is an important variable. C57BL/6NCrl mice were fear-conditioned, and a Y2 receptor-specific agonist (NPY3-36) or antagonist (JNJ-5207787) was applied in BNSTav before fear retrieval at the following day. Remote fear memory was tested on day 16 in two groups of mice, which had (experiment 1) or had not (experiment 2) undergone extinction training after conditioning. In the group with extinction training, tests of remote fear memory revealed partial retrieval of extinction, which was prevented after blockade of Y2 receptors in BNSTav. No such effect was observed in the group with no extinction training, but stimulation of Y2 receptors in BNSTav mimicked the influence of extinction during tests of remote fear memory. Pharmacological manipulation of Y2 receptors in BNSTav before fear acquisition (experiment 3) had no effect on fear memory retrieval, extinction or remote fear memory. Furthermore, partial retrieval of extinction during tests of remote fear memory was associated with changes in number of c-Fos expressing neurons in BNSTav, which was prevented or mimicked upon Y2 blockade or stimulation in BNSTav. These results indicate that Y2 receptor manipulation in BNSTav interferes with fear memory and extinction retrieval at remote stages, likely through controlling neuronal activity in BNSTav during extinction training.


Extinction, Psychological/drug effects , Fear/drug effects , Memory, Long-Term/drug effects , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/antagonists & inhibitors , Septal Nuclei/drug effects , Acrylamides/pharmacology , Animals , Extinction, Psychological/physiology , Fear/physiology , Memory, Long-Term/physiology , Mice , Neurons/drug effects , Neurons/physiology , Piperidines/pharmacology
20.
J Neurosci ; 37(34): 8166-8179, 2017 08 23.
Article En | MEDLINE | ID: mdl-28733354

Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.


Hippocampus/physiopathology , Interneurons/physiology , Parvalbumins/antagonists & inhibitors , Parvalbumins/physiology , Seizures/physiopathology , Animals , Electroencephalography/methods , Hippocampus/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Interneurons/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Pentylenetetrazole/toxicity , Seizures/chemically induced
...