Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Patterns (N Y) ; 5(1): 100897, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38264719

RESUMEN

Leveraging the potential of machine learning and recognizing the broad applications of binary classification, it becomes essential to develop platforms that are not only powerful but also transparent, interpretable, and user friendly. We introduce alphaML, a user-friendly platform that provides clear, legible, explainable, transparent, and elucidative (CLETE) binary classification models with comprehensive customization options. AlphaML offers feature selection, hyperparameter search, sampling, and normalization methods, along with 15 machine learning algorithms with global and local interpretation. We have integrated a custom metric for hyperparameter search that considers both training and validation scores, safeguarding against under- or overfitting. Additionally, we employ the NegLog2RMSL scoring method, which uses both training and test scores for a thorough model evaluation. The platform has been tested using datasets from multiple domains and offers a graphical interface, removing the need for programming expertise. Consequently, alphaML exhibits versatility, demonstrating promising applicability across a broad spectrum of tabular data configurations.

2.
Heliyon ; 9(11): e21001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027967

RESUMEN

Antibodies (mAbs) and antibody fragments (Fabs) constitute one of the largest and most rapidly expanding groups of protein pharmaceuticals. In particular, antibody fragments have certain advantages over mAbs in some therapeutic settings. However, due to their greater chemical diversity, they are more challenging to purify for large-scale production using a standard purification platform. Besides, the removal of Fab-related byproducts poses a difficult purification challenge. Alternative Fab purification platforms could expedite their commercialization and reduce the cost and time invested. Accordingly, we employed a strong cation exchanger using a pH-based, highly linear gradient elution mode following Protein L affinity purification and developed a robust two-step purification platform for an antibody fragment. The optimized pH gradient elution conditions were determined on the basis of purity level, yield, and the abundance of Fab-related impurities, particularly free light chain. The purified Fab molecule Ranibizumab possessed a high degree of similarity to its originator Lucentis. The developed purification platform highly intensified the process and provided successful clearance of formulated Fab- and process-related impurities (∼98 %) with an overall process recovery of 50 % and, thus, might be a new option for Fab purification for both academic and industrial purposes.

3.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946644

RESUMEN

Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.


Asunto(s)
Resistencia a Antineoplásicos , Sistema de Señalización de MAP Quinasas , Neoplasias , Proteína Oncogénica p21(ras) , Quinasas raf/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Quinasas raf/genética
4.
PLoS One ; 16(8): e0256640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34428256

RESUMEN

Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Factores de Transcripción/metabolismo , Basigina/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Humanos , Células MCF-7 , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Proteína que Contiene Valosina/metabolismo
5.
PLoS One ; 16(3): e0247865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657142

RESUMEN

COVID-19 is a global threat with an increasing number of infections. Research on IgG seroprevalence among health care workers (HCWs) is needed to re-evaluate health policies. This study was performed in three pandemic hospitals in Istanbul and Kocaeli. Different clusters of HCWs were screened for SARS-CoV-2 infection. Seropositivity rate among participants was evaluated by chemiluminescent microparticle immunoassay. We recruited 813 non-infected and 119 PCR-confirmed infected HCWs. Of the previously undiagnosed HCWs, 22 (2.7%) were seropositive. Seropositivity rates were highest for cleaning staff (6%), physicians (4%), nurses (2.2%) and radiology technicians (1%). Non-pandemic clinic (6.4%) and ICU (4.3%) had the highest prevalence. HCWs in "high risk" group had similar seropositivity rate with "no risk" group (2.9 vs 3.5 p = 0.7). These findings might lead to the re-evaluation of infection control and transmission dynamics in hospitals.


Asunto(s)
COVID-19/epidemiología , Personal de Salud/tendencias , SARS-CoV-2/inmunología , COVID-19/inmunología , Hospitales/tendencias , Humanos , Control de Infecciones/métodos , Control de Infecciones/tendencias , Pandemias , Prevalencia , Factores de Riesgo , SARS-CoV-2/patogenicidad , Estudios Seroepidemiológicos , Turquía/epidemiología
6.
Molecules ; 26(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561998

RESUMEN

Expression levels of the major mammalian autophagy regulator Beclin 1 and its interaction with Bcl-2 regulate the switch between autophagic cell survival and apoptotic cell death pathways. However, some of the regulators and the precise mechanisms of these processes still remain elusive. Bag-1 (Bcl-2 associated athanogene-1), a member of BAG family proteins, is a multifunctional pro-survival molecule that possesses critical functions in vital cellular pathways. Herein, we report the role of Bag-1 on Bcl-2/Beclin 1 crosstalk through indirectly interacting with Beclin 1. Pull-down experiments suggested a molecular interaction between Bag-1 and Beclin 1 in breast cancer cell lines. On the other hand, in vitro binding assays showed that Bag-1/Beclin 1 interaction does not occur directly but occurs through a mediator molecule. Bag-1 interaction with p-Beclin 1 (T119), indicator of early autophagy, is increased during nutrient starvation suggesting involvement of Bag-1 in the autophagic regulation. Furthermore, CRISPR/Cas9-mediated Bag-1 knock-out in MCF-7 cells hampered cell survival and proliferation and resulted in decreased levels of total LC3 under starvation. Collectively, we suggest that Bag-1 modulates cell survival/death decision through maintaining macroautophagy as a component of Beclin 1-associated complexes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Unión Proteica
7.
Biotechnol Appl Biochem ; 66(6): 915-923, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31396993

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NAD(P)H)-flavin oxidoreductases (flavin reductases) catalyze the reduction of flavin by NAD(P)H and provide the reduced form of flavin mononucleotide (FMN) to flavin-dependent monooxygenases. Based on bioinformatics analysis, we identified a putative flavin reductase gene, sso2055, in the genome of hyperthermophilic archaeon Sulfolobus solfataricus P2, and further cloned this target sequence into an expression vector. The cloned flavin reductase (EC. 1.5.1.30) was purified to homogeneity and characterized further. The purified enzyme exists as a monomer of 17.8 kDa, free of chromogenic cofactors. Homology modeling revealed this enzyme as a TIM barrel, which is also supported by circular dichroism measurements revealing a beta-sheet rich content. The optimal pH for SSO2055 activity was pH 6.5 in phosphate buffer and the highest activity observed was at 120 °C within the measurable temperature. We showed that this enzyme can use FMN and flavin adenine dinucleotide (FAD) as a substrate to generate their reduced forms. The purified enzyme is predicted to be a potential flavin reductase of flavin-dependent monooxygenases that could be involved in the biodesulfurization process of S. solfataricus P2.


Asunto(s)
Oxidorreductasas/metabolismo , Sulfolobus solfataricus/enzimología , Temperatura , Biología Computacional , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación
8.
Plant Mol Biol ; 94(6): 609-623, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28647905

RESUMEN

KEY MESSAGE: For the first time, a comprehensive proteome analysis was conducted on Brachypodium leaves under drought stress. Gradual changes in response to drought stress were monitored. Drought is one of the major stress factors that dramatically affect the agricultural productivity worldwide. Improving the yield under drought is an urgent challenge in agriculture. Brachypodium distachyon is a model species for monocot plants such as wheat, barley and several potential biofuel grasses. In the current study, a comprehensive proteome analysis was conducted on Brachypodium leaves under different levels of drought application. To screen gradual changes upon drought, Brachypodium leaves subjected to drought for 4, 8 and 12 days were collected for each treatment day and relative water content of the leaves was measured for each time point. Cellular responses of Brachypodium were investigated through a proteomic approach involving two dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Among 497 distinct spots in Brachypodium protein repertoire, a total of 13 differentially expressed proteins (DEPs) were identified as responsive to drought by mass spectrometry and classified according to their functions using bioinformatics tools. The biological functions of DEPs included roles in photosynthesis, protein folding, antioxidant mechanism and metabolic processes, which responded differentially at each time point of drought treatment. To examine further transcriptional expression of the genes that code identified protein, quantitative real time PCR (qRT-PCR) was performed. Identified proteins will contribute to the studies involving development of drought-resistant crop species and lead to the delineation of molecular mechanisms in drought response.


Asunto(s)
Brachypodium/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Estrés Fisiológico , Factores de Tiempo , Electroforesis Bidimensional Diferencial en Gel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA