Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374269

RESUMEN

The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose-response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 µM for paraxanthine and 5.80 µM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).

2.
ACS Omega ; 4(22): 19944-19952, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788627

RESUMEN

The widespread industrial use of H2O2 has provoked great interest in the development of new and more efficient materials for its detection. Enzymatic electrochemical sensors have drawn particular attention, primarily because of their excellent selectivity. However, their high cost, instability, complex immobilization, and inherent tendency toward denaturation of the enzyme significantly limit their practical usefulness. Inspired by the powerful proton-catalyzed H2O2 reduction mechanism of peroxidases, we have developed a well-defined and densely functionalized carboxylic graphene derivative (graphene acid, GA) that serves as a proton source and conductive electrode for binding and detecting H2O2. An unprecedented H2O2 sensitivity of 525 µA cm-2 mM-1 is achieved by optimizing the balance between the carboxyl group content and scaffold conductivity of GA. Importantly, the GA sensor greatly outperforms all reported carbon-based H2O2 sensors and is superior to enzymatic ones because of its simple immobilization, low cost, and uncompromised sensitivity even after continuous operation for 7 days. In addition, GA-based sensing electrodes remain highly selective in the presence of interferents such as ascorbic acid, paracetamol, and glucose, as well as complex matrices such as milk. GA-based sensors thus have considerable potential for use in practical industrial sensing technologies.

3.
ChemSusChem ; 12(8): 1664-1672, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30759330

RESUMEN

Electrocatalytic oxygen reduction (ORR) is an emerging synthetic strategy to prepare H2 O2 in a sustainable fashion. N-doped graphitic carbon with embedded cobalt nanoparticles was selected as an advanced material able to selectively trigger the ORR to form H2 O2 with a faradaic efficiency of almost 100 % at very positive applied potentials. The production of H2 O2 proceeded with high rates as calculated by bulk electrolysis (49 mmol g-1 h-1 ) and excellent current densities (≈-0.8 mA cm-2 at 0.5 V vs. reversible hydrogen electrode). The totally selective behavior depended on the combination of concomitant material features, such as the textural properties, the nature of the metal, the distribution of N moieties, the acidic environment, and the applied potential.

4.
Adv Biosyst ; 3(5): e1800286, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-32627414

RESUMEN

Carbon nanotube (CNT)-modified surfaces unequivocally demonstrate their biocompatibility and ability to boost the electrical activity of neuronal cells cultured on them. Reasons for this effect are still under debate. However, the intimate contact at the membrane level between these thready nanostructures and cells, in combination with their unique electrical properties, seems to play an important role. The entire existing literature exploiting the effect of CNTs on modulating cellular behavior deals with cell cultures grown on purified multiwalled carbon nanotubes (MWNTs) deposited on a supporting surface via drop-casting or mechanical entrapment. Here, for the first time, it is demonstrated that CNTs directly grown on a supporting silicon surface by a chemical vapor deposition (CVD)-assisted technique have the same effect. It is shown that primary neuronal cells developed above a carpet of CVD CNTs form a healthy and functional network. The resulting neuronal network shows increased electrical activity when compared to a similar network developed on a control glass surface. The low cost and high versatility of the here presented CVD-based synthesis process, together with the possibility to create on supporting substrate patterns of any arbitrary shape of CNTs, open up new opportunities for brain-machine interfaces or neuroprosthetic devices.


Asunto(s)
Interfaces Cerebro-Computador , Hipocampo/metabolismo , Nanotubos de Carbono , Red Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Hipocampo/citología , Red Nerviosa/citología , Neuronas/citología , Ratas
5.
Chemistry ; 22(26): 8879-88, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168484

RESUMEN

The synthesis of functionalised carbon nanotubes as receptors for riboflavin (RBF) is reported. Carbon nanotubes, both single-walled and multi-walled, have been functionalised with 1,3,5-triazines and p-tolyl chains by aryl radical addition under microwave irradiation and the derivatives have been fully characterised by using a range of techniques. The interactions between riboflavin and the hybrids were analysed by using fluorescence and UV/Vis spectroscopic techniques. The results show that the attached functional groups minimise the π-π stacking interactions between riboflavin and the nanotube walls. Comparison of p-tolyl groups with the triazine groups shows that the latter have stronger interactions with riboflavin because of the presence of hydrogen bonds. Moreover, the triazine derivatives follow the Stern-Volmer relationship and show a high association constant with riboflavin. In this way, artificial receptors in catalytic processes could be designed through specific control of the interaction between functionalised carbon nanotubes and riboflavin.


Asunto(s)
Nanotubos de Carbono/química , Riboflavina/química , Triazinas/química , Catálisis , Enlace de Hidrógeno , Microscopía Electrónica de Transmisión , Microondas , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termogravimetría
6.
Chemistry ; 21(36): 12769-77, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26179742

RESUMEN

The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl-functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2 O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching.

7.
Dalton Trans ; 42(17): 6074-82, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23400013

RESUMEN

Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.


Asunto(s)
Metales/química , Modelos Moleculares , Sulfuros/química , Iones/química , Ligandos , Termodinámica
8.
Chem Commun (Camb) ; 47(39): 11122-4, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21909526

RESUMEN

Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.


Asunto(s)
Biocatálisis , Citocromos c/química , Citocromos c/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oxígeno/metabolismo , Desplegamiento Proteico , Electroquímica , Electrodos , Ácidos Grasos/química , Alcoholes Grasos/química , Oro/química , Interacciones Hidrofóbicas e Hidrofílicas , Oxidación-Reducción , Compuestos de Sulfhidrilo/química
9.
J Biol Inorg Chem ; 15(8): 1233-42, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20549271

RESUMEN

We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.


Asunto(s)
Citocromos c/química , Enzimas Inmovilizadas/química , Desplegamiento Proteico/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Urea/farmacología , Adsorción , Citocromos c/genética , Citocromos c/metabolismo , Electroquímica , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría Raman , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...