Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Nat Mater ; 19(12): 1362-1371, 2020 12.
Article En | MEDLINE | ID: mdl-32778816

Nanoparticle delivery to solid tumours over the past ten years has stagnated at a median of 0.7% of the injected dose. Varying nanoparticle designs and strategies have yielded only minor improvements. Here we discovered a dose threshold for improving nanoparticle tumour delivery: 1 trillion nanoparticles in mice. Doses above this threshold overwhelmed Kupffer cell uptake rates, nonlinearly decreased liver clearance, prolonged circulation and increased nanoparticle tumour delivery. This enabled up to 12% tumour delivery efficiency and delivery to 93% of cells in tumours, and also improved the therapeutic efficacy of Caelyx/Doxil. This threshold was robust across different nanoparticle types, tumour models and studies across ten years of the literature. Our results have implications for human translation and highlight a simple, but powerful, principle for designing nanoparticle cancer treatments.


Doxorubicin/analogs & derivatives , Drug Delivery Systems , Nanoparticles , Neoplasms, Experimental , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Humans , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology
2.
ACS Nano ; 13(7): 8023-8034, 2019 07 23.
Article En | MEDLINE | ID: mdl-31268684

The surface of nanoparticles changes immediately after intravenous injection because blood proteins adsorb on the surface. How this interface changes during circulation and its impact on nanoparticle distribution within the body is not understood. Here, we developed a workflow to show that the evolution of proteins on nanoparticle surfaces predicts the biological fate of nanoparticles in vivo. This workflow involves extracting nanoparticles at multiple time points from circulation, isolating the proteins off the surface and performing proteomic mass spectrometry. The mass spectrometry protein library served as inputs, while blood clearance and organ accumulation were used as outputs to train a supervised deep neural network that predicts nanoparticle biological fate. In a double-blinded study, we tested the network by predicting nanoparticle spleen and liver accumulation with upward of 94% accuracy. Our neural network discovered that the mechanism of liver and spleen uptake is due to patterns of a multitude of nanoparticle surface adsorbed proteins. There are too many combinations to change these proteins manually using chemical or biological inhibitors to alter clearance. Therefore, we developed a technique that uses the host to act as a bioreactor to prepare nanoparticles with predictable clearance patterns that reduce liver and spleen uptake by 50% and 70%, respectively. These techniques provide opportunities to both predict nanoparticle behavior and also to engineer surface chemistries that are specifically designed by the body.


Blood Proteins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Supervised Machine Learning , Adsorption , Animals , Mass Spectrometry , Optical Imaging , Particle Size , Peptide Library , Proteomics , Rats , Rats, Sprague-Dawley , Surface Properties
3.
Nano Lett ; 19(1): 116-123, 2019 01 09.
Article En | MEDLINE | ID: mdl-30525697

Nanoparticles are engineered from materials such as metals, polymers, and different carbon allotropes that do not exist within the body. Exposure to these exogenous compounds raises concerns surrounding toxicity, inflammation, and immune activation. These responses could potentially be mitigated by synthesizing nanoparticles directly from molecules derived from the host. However, efforts to assemble patient-derived macromolecules into structures with the same degree of size and shape tunability as their exogenous counterparts remains a significant challenge. Here we solve this problem by creating a new class of size- and shape-tunable personalized protein nanoparticles (PNP) made entirely from patient-derived proteins. PNPs are built into different sizes and shapes with the same degree of tunability as gold nanoparticles. They are biodegradable and do not activate innate or adaptive immunity following single and repeated administrations in vivo. PNPs can be further modified with specific protein cargos that remain catalytically active even after intracellular delivery in vivo. Finally, we demonstrate that PNPs created from different human patients have unique molecular fingerprints encoded directly into the structure of the nanoparticle. This new class of personalized nanomaterial has the potential to revolutionize how we treat patients and can become an integral component in the diagnostic and therapeutic toolbox.


Metal Nanoparticles/chemistry , Nanostructures/chemistry , Precision Medicine , Proteins/chemistry , Carbon/chemistry , Gold/chemistry , Humans , Particle Size , Polymers/chemistry , Protein Corona/chemistry , Proteins/chemical synthesis , Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 114(51): E10871-E10880, 2017 12 19.
Article En | MEDLINE | ID: mdl-29208719

A recent metaanalysis shows that 0.7% of nanoparticles are delivered to solid tumors. This low delivery efficiency has major implications in the translation of cancer nanomedicines, as most of the nanomedicines are sequestered by nontumor cells. To improve the delivery efficiency, there is a need to investigate the quantitative contribution of each organ in blocking the transport of nanoparticles to solid tumors. Here, we hypothesize that the removal of the liver macrophages, cells that have been reported to take up the largest amount of circulating nanoparticles, would lead to a significant increase in the nanoparticle delivery efficiency to solid tumors. We were surprised to discover that the maximum achievable delivery efficiency was only 2%. In our analysis, there was a clear correlation between particle design, chemical composition, macrophage depletion, tumor pathophysiology, and tumor delivery efficiency. In many cases, we observed an 18-150 times greater delivery efficiency, but we were not able to achieve a delivery efficiency higher than 2%. The results suggest the need to look deeper at other organs such as the spleen, lymph nodes, and tumor in mediating the delivery process. Systematically mapping the contribution of each organ quantitatively will allow us to pinpoint the cause of the low tumor delivery efficiency. This, in effect, enables the generation of a rational strategy to improve the delivery efficiency of nanoparticles to solid tumors either through the engineering of multifunctional nanosystems or through manipulation of biological barriers.


Kupffer Cells/metabolism , Nanoparticles , Neoplasms/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Delivery Systems , Gold , Heterografts , Humans , Liver/cytology , Liver/metabolism , Macrophages , Metal Nanoparticles , Mice , Nanomedicine , Neoplasms/drug therapy , Phagocytes/metabolism , Spleen/cytology , Spleen/metabolism
5.
J Control Release ; 240: 332-348, 2016 10 28.
Article En | MEDLINE | ID: mdl-26774224

30-99% of administered nanoparticles will accumulate and sequester in the liver after administration into the body. This results in reduced delivery to the targeted diseased tissue and potentially leads to increased toxicity at the hepatic cellular level. This review article focuses on the inter- and intra-cellular interaction between nanoparticles and hepatic cells, the elimination mechanism of nanoparticles through the hepatobiliary system, and current strategies to manipulate liver sequestration. The ability to solve the "nanoparticle-liver" interaction is critical to the clinical translation of nanotechnology for diagnosing and treating cancer, diabetes, cardiovascular disorders, and other diseases.


Biliary Tract/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Nanoparticles/metabolism , Animals , Biliary Tract/drug effects , Hepatobiliary Elimination , Humans , Kupffer Cells/drug effects , Liver/drug effects , Nanoparticles/chemistry , Nanoparticles/toxicity , Surface Properties
6.
ACS Appl Mater Interfaces ; 6(16): 13600-6, 2014 Aug 27.
Article En | MEDLINE | ID: mdl-25090028

Targeted drug delivery using functional nanoparticles has provided new strategies for improving therapeutic efficacy while concurrently minimizing toxicity. Photodynamic therapy is an approach that offers control of drug delivery by use of an external photon source to allow active therapeutic release to a target area. Upconverting nanoparticles (UCNPs) have potential to operate as integral components of photodynamic therapeutic platforms based on the resonant absorption of near-infrared (NIR) radiation and emission at shorter wavelengths. NIR radiation is minimally absorbed and scattered by biological tissues, and the NIR excitation of UCNPs can generate anti-Stokes emission in the ultraviolet-visible wavelength range at intensities that can be used to trigger cleavage of bonds linking therapeutics at the nanoparticle interface. Herein, we describe an investigation of photocleavage at the surface of UCNPs to release the chemotherapeutic 5-fluorouracil (5-FU). Core-shell UCNPs composed of a ß-NaYF4: 4.95% Yb, 0.08% Tm core and a ß-NaYF4 shell were coated with o-phosphorylethanolamine ligands and coupled to an o-nitrobenzyl (ONB) derivative of 5-FU. NIR excitation of the UCNPs resulted in photoluminescence (PL) emission bands centered at 365, 455, and 485 nm. The UV-blue PL was in resonance with the absorption band of the ONB-FU derivative resulting in photocleavage and subsequent release of the 5-FU drug from the UCNPs for these in vitro studies. The release of 5-FU was complete in <14 min using a NIR laser source centered at 980 nm that operated at a power of <100 mW. The efficiency of triggered release was as high as 77% of the total ONB-FU conjugate, while the rate of drug release could be tuned with the laser power output. This work provides an important first step in the development of a UCNP platform capable of targeted chemotherapy.


Antineoplastic Agents/pharmacology , Drug Liberation , Infrared Rays , Nanoparticles/chemistry , Fluorides/chemistry , Fluorouracil/pharmacology , Luminescence , Prodrugs/pharmacology , Solubility , Ultraviolet Rays , Water/chemistry , Yttrium/chemistry
7.
Methods Mol Biol ; 1199: 241-55, 2014.
Article En | MEDLINE | ID: mdl-25103813

Semiconductor quantum dots (QDs) have long served as integral components in signal transduction modalities such as Förster resonance energy transfer (FRET). The majority of bioanalytical methods using QDs for FRET-based techniques simply monitor binding-induced conformational changes. In more recent work, QDs have been incorporated into solid-phase support systems, such as microfluidic chips, to serve as physical platforms in the development of functional biosensors and bioprobes. Herein, we describe a simple strategy for the transduction of nucleic acid hybridization that combines a novel design method based on FRET with an electrokinetically controlled microfluidic technology, and that offers further potential for amelioration of sample-handling issues and for simplification of dynamic stringency control.


Fluorescence Resonance Energy Transfer/methods , Microfluidic Analytical Techniques/methods , Nucleic Acid Hybridization/methods , Quantum Dots/chemistry , Biotin/chemistry , DNA/chemistry , Dimethylpolysiloxanes/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Glass/chemistry , Microfluidic Analytical Techniques/instrumentation , Models, Molecular , Nucleic Acid Conformation
8.
Anal Chim Acta ; 788: 148-57, 2013 Jul 25.
Article En | MEDLINE | ID: mdl-23845494

A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1.


Fluorescence Resonance Energy Transfer/methods , Microfluidic Analytical Techniques/methods , Nucleic Acid Hybridization/methods , Quantum Dots , Base Pairing , Carbocyanines , Coloring Agents , Dimethylpolysiloxanes/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Limit of Detection , Microfluidic Analytical Techniques/instrumentation , Oligonucleotide Probes , Sensitivity and Specificity
9.
Anal Chem ; 84(1): 312-9, 2012 Jan 03.
Article En | MEDLINE | ID: mdl-22136151

The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1.


Fluorescence Resonance Energy Transfer , Nucleic Acid Hybridization , Quantum Dots , Base Sequence , DNA Probes , Microfluidics/instrumentation
10.
Sensors (Basel) ; 11(10): 9732-63, 2011.
Article En | MEDLINE | ID: mdl-22163723

Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy.


Biosensing Techniques/methods , Microfluidics/methods , Quantum Dots , Animals , Cells/metabolism , Fluorescence Resonance Energy Transfer , Humans
11.
Anal Bioanal Chem ; 399(7): 2331-42, 2011 Mar.
Article En | MEDLINE | ID: mdl-20658228

Quantum dots (QDs) have shown promise as imaging agents in cancer, heart disease, and gene therapy research. This review focuses on the design of QDs, and modification using peptides and proteins for mediated targeting of tissues for fluorescence imaging of tumors in vivo. Recent examples from the literature are used to illustrate the potential of QDs as effective imaging agents. The distribution and ultimate fate of QDs in vivo is considered, and considerations of designs that minimize potential toxicity are presented.


Contrast Media/chemistry , Diagnostic Imaging/instrumentation , Nanomedicine/methods , Quantum Dots , Animals , Diagnostic Imaging/methods , Fluorescence , Humans , Nanomedicine/trends , Neoplasms/diagnosis , Particle Size , Peptides/chemistry , Proteins/chemistry
12.
Anal Bioanal Chem ; 399(1): 133-41, 2011 Jan.
Article En | MEDLINE | ID: mdl-20978748

The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.


Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Microfluidics/methods , Nucleic Acid Hybridization/methods , Quantum Dots , Biosensing Techniques/instrumentation , Fluorescence Resonance Energy Transfer/instrumentation , Microfluidics/instrumentation , Oligonucleotides/genetics
13.
Anal Chim Acta ; 673(1): 1-25, 2010 Jul 12.
Article En | MEDLINE | ID: mdl-20630173

A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.


Biosensing Techniques/methods , Quantum Dots , Animals , Fluorescence Resonance Energy Transfer/methods , Humans , Luminescent Measurements/methods
...