Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 132969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857733

RESUMEN

Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.


Asunto(s)
Embalaje de Alimentos , Lactoferrina , Embalaje de Alimentos/métodos , Lactoferrina/química , Antioxidantes/química , Antioxidantes/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Humanos
2.
Int J Biol Macromol ; 259(Pt 2): 129182, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176499

RESUMEN

Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10-11 g. m/m2. s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.


Asunto(s)
Antiinfecciosos , Quitosano , Malus , Nanofibras , Nanopartículas , Metilcelulosa , Antioxidantes/farmacología , Lactoferrina , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopolímeros , Embalaje de Alimentos/métodos
3.
Food Chem X ; 20: 100883, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144784

RESUMEN

As tetracycline antibiotics were used in the poultry sector, their residue in edible animal products may adversely affect food safety and human health. The development of selective and sensitive tetracycline sensors has garnered a lot of interest due to the complexity of food samples. Therefore, a fluorescent sensing probe based on chromium(III)-metal-organic framework was developed for the rapid detection of tetracycline. After the addition of tetracycline, blue emission at λem 410 nm was effectively quenched by the interaction between TC and Cr(III)-metal-organic framework material. Under optimized conditions (sensor concentration: 30 mg/L and pH: 10.0), the sensing probe showed a fast response time (1 min), and low detection limit (0.78 ng/mL) with a linear range (5-45 ng/mL). Interestingly, the Cr(III)-metal-organic framework was successfully applied to quantity tetracycline residue in chicken meat and egg samples with recoveries of 95.17-06.93%. To deduce, our work can provide a new strategy for the direct detection of tetracycline in food samples.

4.
Mikrochim Acta ; 190(9): 371, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646854

RESUMEN

The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Humanos , Inmunoensayo , Oligonucleótidos , Alimentos Procesados
5.
Int J Biol Macromol ; 251: 126334, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37586631

RESUMEN

In this study, antimicrobial biocomposite films based on gelatin-κ-carrageenan (Gκ) with 1, 2 and 4 % lactoferrin (L) loaded chromium-based metal-organic frameworks (L@Cr-MOFs) nanoparticles were synthesized by casting methods. The addition of L loaded Cr-MOFs into Gκ based films increased elongation at break from 2.19 to 14.92 % and decreased the tensile strength from 65.1 to 31.22 MPa. L@Cr-MOFs addition reduced swelling index (from 105 to 70.8 %), water solubility (from 61.3 to 34.63 %) and water vapor permeability (from 2.46 to 2.19 × 10-11 g. m/m2. s). When the additional amount was 4 wt%, the Gκ/L@Cr-MOFs films showed antibacterial effects against Escherichia coli and Staphylococcus aureus with the inhibition zone of 19.7 mm and 20.2 mm, respectively. In addition, strawberries preservation trial shown that the Gκ/L@Cr-MOFs films delayed the growth of spoilage molds on the surface of fruits. This research indicated that Gκ/L@Cr-MOFs are promising active packaging materials for the preservation of perishable fruits.

6.
Mikrochim Acta ; 190(7): 253, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286753

RESUMEN

An innovative aptamer labeled with 5-FAM has been developed with a high affinity for Yersinia enterocolitica (Y. enterocolitica) using graphene oxide (GO) as a quenching platform. The selectivity of the prepared system was evaluated in the presence of common coexisted bacteria like Yersinia pseudotuberculosis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium. Some experimental factors like pH and stability were investigated. The results showed that in the absence of Y. enterocolitica, aptamer labeled with 5-FAM was bonded with GO, causing fluorescence to be relatively weak. After the addition of Y. enterocolitica, the aptamer is released from the GO surface and binds to the target bacteria, and significantly increases the fluorescence intensity with an excitation wavelength of 410 nm and an emission wavelength of 530 nm. After optimizing all conditions, the system exhibited a wide linear response for Y. enterocolitica in the concentration range 10 to 1.0 × 109 CFU•mL-1 and the limit of detection (LOD) was 3 CFU•mL-1. This system demonstrated that GO-designed aptamers can be successful in detecting Y. enterocolitica in whole-cell forms, making them potentially useful for screening and rapid detection.


Asunto(s)
Yersinia enterocolitica , Yersinia pseudotuberculosis , Límite de Detección , Salmonella typhimurium , Oligonucleótidos , Escherichia coli
7.
Int J Biol Macromol ; 243: 125320, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307977

RESUMEN

The potential use of agro-waste in food packaging applications is receiving remarkable attention due to its sustainable approach and biodegradable properties. As typical lignocellulosic biomass, rice straw (RS) is widely produced but is usually abandoned and burned, causing tremendous environmental concerns. The exploration of using RS as the source of biodegradable packaging materials is promising for economically converting this agricultural waste into packaging material, thereby providing a considerable solution for RS disposal and an alternative solution to synthetic plastic waste. Polymers have been infused with nanoparticles, fibers, and whiskers, along with plasticizers and cross-linkers, and fillers like nanoparticles and fibers. They have also been blended with natural extracts, essential oils, and other synthetic and natural polymers to improve RS properties. There is still much research to be done before this biopolymer can be applied at an industrial level in food packaging. In this respect, RS can be valued for packaging to add value to these underutilized residues. This review article focuses on the extraction methods and functionality of cellulose fibers and their nanostructured forms from RS and their utilization in packaging applications.


Asunto(s)
Celulosa , Oryza , Celulosa/química , Oryza/química , Biopolímeros , Polímeros , Plásticos , Embalaje de Alimentos
8.
Int J Biol Macromol ; 242(Pt 3): 125044, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224901

RESUMEN

In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.


Asunto(s)
Quitosano , Nanofibras , Rhus , Quitosano/química , Antocianinas/farmacología , Antocianinas/química , Pectinas , Concentración de Iones de Hidrógeno , Alimentos Marinos , Antibacterianos/farmacología , Embalaje de Alimentos/métodos
9.
Comb Chem High Throughput Screen ; 26(15): 2598-2606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927436

RESUMEN

Biogenic amines (BAs) are compounds deemed to be foodstuff contaminants and are the cause of poisoning or allergy. The main BAs found in foods include histamine, tyramine, putrescine, cadaverine, spermine and spermidine. The number of poisoning cases related to BAs in food has increased, which is reinforcing the need for BAs detection to ensure food safety. BAs are found in varying quantities in different foods such as fish, fruits, meat, cheese, vegetables, beer, and wine. Currently, different analytical techniques are used for BAs detection, as well as sample treatment methods that allow greater sensitivity, higher analyzing speed and lower detection limits. Moreover, BAs can be precursors of nitrosamines, which have been associated with mutagenic and carcinogenic activity. This review aims to provide a general approach to the different detection techniques of the BAs in foods, their concentrations and treatment methods.


Asunto(s)
Aminas Biogénicas , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Aminas Biogénicas/análisis , Aminas Biogénicas/química , Productos Pesqueros/análisis
10.
Int J Food Microbiol ; 388: 110066, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610235

RESUMEN

Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.


Asunto(s)
Antiinfecciosos , Gases em Plasma , Gases em Plasma/farmacología , Gases em Plasma/química , Escherichia coli , Staphylococcus aureus , Tecnología
11.
Food Sci Nutr ; 10(6): 2009-2020, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35702287

RESUMEN

In this study, 10 different traditional Iranian cheeses, which are still consumed by people in rural areas of Iran, were examined to isolate new strains of probiotic bacteria. Isolated bacteria were identified by 16s rRNA gene amplification and subjected to series of in vitro tests to find out their probiotic potential. A total of 2345 colonies were collected and 465 of them were confirmed as lactic acid bacteria (LAB), of which Lactiplantibacillus plantarum, Lactobacillus bulgaricus, and Lacticaseibacillus casei were the top three isolated bacteria. Among the different species of LAB isolated in this study, Lactip. plantarum was the most isolated species, and seven isolates had the significant criteria for being a probiotic strain than other isolates indicating the most adaptable properties of this species. Lactiplantibacillus plantarum was the most resistant bacteria in the bile resistance test and was also the most durable bacteria in gastrointestinal conditions, for example, acidic environment (pH = 2.5) and trypsin. In contrast, Lacticaseibacillus casei was the most susceptible bacterial strain. Lactobacillus rhamnosus showed the most antibacterial effect against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study showed that probiotic strains isolated from local cheeses could be considered as suitable biopreservatives and used as specific starter cultures for the production of functional cheeses.

12.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630645

RESUMEN

Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.


Asunto(s)
Nanocompuestos , Materiales Inteligentes , Animales , Antocianinas/química , Biopolímeros , Colorimetría , Concentración de Iones de Hidrógeno , Nanocompuestos/química , Extractos Vegetales/química
13.
Adv Colloid Interface Sci ; 305: 102709, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35640316

RESUMEN

Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Sistemas de Liberación de Medicamentos/métodos , Liposomas , Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas/química
14.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960949

RESUMEN

There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy. This article reviews the different kinds of nanocarriers available for loading active compounds into these types of packaging materials and then discusses their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of the packaging materials. Furthermore, it highlights the different kinds of bioactive compounds that can be incorporated into biopolymer-based packaging.

15.
Nanomaterials (Basel) ; 11(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070054

RESUMEN

Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.

16.
Carbohydr Polym ; 255: 117488, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436248

RESUMEN

A novel pH-sensitive colorimetric film was prepared based on immobilizing red barberry anthocyanins (RBAs) within composite chitin nanofiber (CNF) and methylcellulose (MC) matrices. The incorporation of CNFs and RBAs improved their mechanical properties, moisture resistance, and UV-vis screening properties. Moreover, the RBAs could be used as colorimetric indicators to detect food spoilage because they are sensitive to changes in pH and ammonia gas production. The RBA-halochromic indicator changed from reddish/crimson → pink → yellow with increasing pH, and from pink → yellow with increasing ammonia vapor concentration. Furthermore, the smart films possessed good antioxidant and antimicrobial activity owing to the presence of the RBAs and CNFs. Finally, the validity of the indicator to monitor the freshness/spoilage of a model food (fish) was demonstrated. Overall, this study shows that active/smart films can be assembled from food grade ingredients that can protect and monitor the freshness of products, like meat and fish.


Asunto(s)
Antocianinas/química , Antiinfecciosos/química , Antioxidantes/química , Berberis/química , Quitina/química , Embalaje de Alimentos/métodos , Materiales Inteligentes/química , Amoníaco/análisis , Amoníaco/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Biodegradación Ambiental , Compuestos de Bifenilo/antagonistas & inhibidores , Color , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Productos Pesqueros/análisis , Frutas/química , Humanos , Concentración de Iones de Hidrógeno , Membranas Artificiales , Metilcelulosa/química , Nanofibras/química , Nanofibras/ultraestructura , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Materiales Inteligentes/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Resistencia a la Tracción
17.
Int J Biol Macromol ; 166: 741-750, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137387

RESUMEN

A new pH-responsive color indicator film was prepared by blending barberry anthocyanin (BA) with methylcellulose (MC)/chitosan nanofiber (ChNF) composite film. The addition of ChNF and BA increased the mechanical and water barrier properties but reduced the UV-vis light transmittance of the composite film. Anthocyanin showed proper compatibility with the composite film. The color indicator film showed an apparent color change in response to pH changes and ammonia gas, being suitable for indicating the change in food pH, the formation of volatile nitrogen compounds, and food decay. The color indicator film changed clearly from reddish-pink to pale peach and finally to yellow when exposed to different pH buffers. However, in response to ammonia vapor, the color changed from pink to pale green and yellow. Besides, the color indicator film exhibited remarkable antioxidant activity. Therefore, the pH-sensing color indicator film can be used as a smart indicator for real-time freshness monitoring of meat and seafood products.


Asunto(s)
Antocianinas/química , Quitosano/química , Embalaje de Alimentos/métodos , Carne/normas , Metilcelulosa/química , Nanofibras/química , Berberis/química , Técnicas Biosensibles/métodos , Compuestos Cromogénicos/química , Concentración de Iones de Hidrógeno
18.
Toxicol Rep ; 6: 143-150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30705830

RESUMEN

Mushrooms account for a part of human diet due to their exquisite taste and protein content as well as their promising health effects unveiled by scientific research. Toxic and non-toxic mushrooms frequently share considerable morphological similarities, which mislead the collectors/consumers, resulting in mycotoxicity. Numerous mushroom species are considered "poisonous" as they produce dangerous toxins. For instance, members of the genus Amanita, especially A. phalloides, A. virosa and A. verna, are responsible for severe and even life-threatening noxious consequences. Globally, mushroom poisoning is a crucial healthcare issue as it leads to a considerable number of deaths annually. However, no definite antidote has been introduced to treat this poisoning. The present article discusses the characteristics of A. virosa in terms of epidemiology, mechanisms of toxicity, poisoning features and management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...