Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112700

RESUMEN

Tumour innervation is associated with worse patient outcomes in multiple cancers1,2, which suggests that it may regulate metastasis. Here we observed that highly metastatic mouse mammary tumours acquired more innervation than did less-metastatic tumours. This enhanced innervation was driven by expression of the axon-guidance molecule SLIT2 in tumour vasculature. Breast cancer cells induced spontaneous calcium activity in sensory neurons and elicited release of the neuropeptide substance P (SP). Using three-dimensional co-cultures and in vivo models, we found that neuronal SP promoted breast tumour growth, invasion and metastasis. Moreover, patient tumours with elevated SP exhibited enhanced lymph node metastatic spread. SP acted on tumoral tachykinin receptors (TACR1) to drive death of a small population of TACR1high cancer cells. Single-stranded RNAs (ssRNAs) released from dying cells acted on neighbouring tumoural Toll-like receptor 7 (TLR7) to non-canonically activate a prometastatic gene expression program. This SP- and ssRNA-induced Tlr7 gene expression signature was associated with reduced breast cancer survival outcomes. Therapeutic targeting of this neuro-cancer axis with the TACR1 antagonist aprepitant, an approved anti-nausea drug, suppressed breast cancer growth and metastasis in multiple models. Our findings reveal that tumour-induced hyperactivation of sensory neurons regulates multiple aspects of metastatic progression in breast cancer through a therapeutically targetable neuropeptide/extracellular ssRNA sensing axis.

2.
Cancer Discov ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39028915

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer secreted protein that becomes over-expressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia induced factor-1a (HIF1a) nuclear retention and function. NPTX1 is over-expressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1a hypoxic response in PDAC.

4.
Mol Cell ; 84(10): 1819-1821, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759621

RESUMEN

In this issue of Molecular Cell, Yang et al.1 find that arginine-to-cysteine substitutants are enriched in a subset of lung cancer proteomes, potentiated by arginine deprivation, and promote resistance to chemotherapy.


Asunto(s)
Arginina , Cisteína , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Arginina/metabolismo , Proteoma/metabolismo , Resistencia a Antineoplásicos/genética
6.
Immunity ; 57(1): 153-170.e6, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159571

RESUMEN

The dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. An analogous population was detectable in the brains of human AD patients, including in the cortical tissue, using multiplexed spatial transcriptomics. This population, which we designate as terminally inflammatory microglia (TIM), exhibited defects in amyloid-ß clearance and altered cell-cell communication during aducanumab treatment. TIM may represent an exhausted-like state for inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 carriers and the elderly, thus presenting a potential therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Anciano , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Genotipo , Microglía
7.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790361

RESUMEN

Efficient communication between mitochondria and the nucleus underlies homoeostatic metabolic control, though the involved mitochondrial factors and their mechanisms are poorly defined. Here, we report the surprising detection of multiple mitochondrial-derived transfer RNAs (mito-tRNAs) within the nuclei of human cells. Focused studies of nuclear-transported mito-tRNA-asparagine (mtAsn) revealed that its cognate charging enzyme (NARS2) is also present in the nucleus. MtAsn promoted interaction of NARS2 with histone deacetylase 2 (HDAC2), and repressed HDAC2 association with specific chromatin loci. Perturbation of this axis using antisense oligonucleotides promoted nucleotide biogenesis and enhanced breast cancer growth, and RNA and nascent transcript sequencing demonstrated specific alterations in the transcription of nuclear genes. These findings uncover nucleic-acid mediated communication between two organelles and the existence of a machinery for nuclear gene regulation by a mito-tRNA that restricts tumor growth through metabolic control. Highlights: Multiple mitochondrial-derived tRNAs are detected in human cell nucleiMtAsn promotes binding between NARS2 and HDAC2Metabolic alterations driven by mtAsn impact cell proliferationMtAsn inhibition releases HDAC2 to bind and transcriptionally regulate multiple nuclear genes.

8.
Nat Rev Cancer ; 23(11): 746-761, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814109

RESUMEN

Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Procesos Neoplásicos , Aminoácidos , Microambiente Tumoral
9.
Cancer Res ; 83(18): 3013-3025, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37335131

RESUMEN

The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE: APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.


Asunto(s)
Enfermedad de Alzheimer , Melanoma , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Portadoras , Melanoma/genética
10.
Sci Adv ; 9(1): eade9120, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608131

RESUMEN

Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.


Asunto(s)
Arginina , Neoplasias Colorrectales , Humanos , Secuencia de Bases , Arginina/genética , Arginina/metabolismo , Biosíntesis de Proteínas , Proteómica , Escherichia coli/metabolismo , Codón/metabolismo , Neoplasias Colorrectales/genética , Microambiente Tumoral
11.
bioRxiv ; 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36711568

RESUMEN

Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.

12.
Nat Cancer ; 3(12): 1484-1497, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510010

RESUMEN

The human genome contains 61 codons encoding 20 amino acids. Synonymous codons representing a given amino acid are decoded by a set of transfer RNAs (tRNAs) called isoacceptors. We report the surprising observation that two isoacceptor tRNAs that decode synonymous codons become modulated in opposing directions during breast cancer progression. Specifically, tRNAIleUAU became upregulated, whereas tRNAIleGAU became repressed as breast cancer cells attained enhanced metastatic capacity. Functionally, tRNAIleUAU promoted and tRNAIleGAU suppressed metastatic colonization in mouse xenograft models. These tRNAs mediated opposing effects on codon-dependent translation of growth-promoting genes, consistent with genomic enrichment or depletion of their cognate codons in mitotic genes. Our findings uncover a specific isoacceptor tRNA pair that act in opposition, divergently impacting growth-regulating genes and a disease phenotype. Degeneracy of the genetic code can thus be biologically exploited by human cancer cells via tRNA isoacceptor shifts that causally facilitate the transition toward a growth-promoting state.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/genética , ARN de Transferencia de Isoleucina , Codón/genética , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoácidos/genética , Proliferación Celular/genética
13.
Nature ; 611(7935): 346-351, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36130725

RESUMEN

Clinical outcomes of severe acute respiratory syndrome 2 (SARS-CoV-2) infection are highly heterogeneous, ranging from asymptomatic infection to lethal coronavirus disease 2019 (COVID-19). The factors underlying this heterogeneity remain insufficiently understood. Genetic association studies have suggested that genetic variants contribute to the heterogeneity of COVID-19 outcomes, but the underlying potential causal mechanisms are insufficiently understood. Here we show that common variants of the apolipoprotein E (APOE) gene, homozygous in approximately 3% of the world's population1 and associated with Alzheimer's disease, atherosclerosis and anti-tumour immunity2-5, affect COVID-19 outcome in a mouse model that recapitulates increased susceptibility conferred by male sex and advanced age. Mice bearing the APOE2 or APOE4 variant exhibited rapid disease progression and poor survival outcomes relative to mice bearing the most prevalent APOE3 allele. APOE2 and APOE4 mice exhibited increased viral loads as well as suppressed adaptive immune responses early after infection. In vitro assays demonstrated increased infection in the presence of APOE2 and APOE4 relative to APOE3, indicating that differential outcomes are mediated by differential effects of APOE variants on both viral infection and antiviral immunity. Consistent with these in vivo findings in mice, our results also show that APOE genotype is associated with survival in patients infected with SARS-CoV-2 in the UK Biobank (candidate variant analysis, P = 2.6 × 10-7). Our findings suggest APOE genotype to partially explain the heterogeneity of COVID-19 outcomes and warrant prospective studies to assess APOE genotyping as a means of identifying patients at high risk for adverse outcomes.


Asunto(s)
Apolipoproteínas E , COVID-19 , Genética Humana , Ratones Transgénicos , SARS-CoV-2 , Animales , Humanos , Masculino , Ratones , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , COVID-19/genética , COVID-19/mortalidad , COVID-19/virología , Ratones Transgénicos/genética , Ratones Transgénicos/virología , Estudios Prospectivos , SARS-CoV-2/patogenicidad , Modelos Animales de Enfermedad
14.
Mol Cell ; 82(14): 2604-2617.e8, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35654044

RESUMEN

Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.


Asunto(s)
Neoplasias de la Mama , ARN de Transferencia , Neoplasias de la Mama/genética , Femenino , Humanos , Fosfoproteínas , ARN Mensajero/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Nucleolina
15.
Dev Cell ; 57(9): 1146-1159.e7, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35487218

RESUMEN

Metastatic colonization is the primary cause of death from colorectal cancer (CRC). We employed genome-scale in vivo short hairpin RNA (shRNA) screening and validation to identify 26 promoters of CRC liver colonization. Among these genes, we identified a cluster that contains multiple targetable genes, including ITPR3, which promoted liver-metastatic colonization and elicited similar downstream gene expression programs. ITPR3 is a caffeine-sensitive inositol 1,4,5-triphosphate (IP3) receptor that releases calcium from the endoplasmic reticulum and enhanced metastatic colonization by inducing expression of RELB, a transcription factor that is associated with non-canonical NF-κB signaling. Genetic, cell biological, pharmacologic, and clinical association studies revealed that ITPR3 and RELB drive CRC colony formation by promoting cell survival upon substratum detachment or hypoxic exposure. RELB was sufficient to drive colonization downstream of ITPR3. Our findings implicate the ITPR3/calcium/RELB axis in CRC metastatic colony formation and uncover multiple clinico-pathologically associated targetable proteins as drivers of CRC metastatic colonization.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Calcio/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Hepáticas/genética , FN-kappa B/metabolismo , Factor de Transcripción ReIB/genética , Factor de Transcripción ReIB/metabolismo
16.
Immunity ; 55(4): 580-582, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417670

RESUMEN

Interferon signaling mediates resistance to immune checkpoint blockade therapy, but the underlying mechanisms are poorly understood. In this issue of Immunity, Cucolo et al. identify RIPK1 as an interferon-stimulated gene with potent effects on cell extrinsic and intrinsic immunotherapy resistance.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Neoplasias , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Factores Inmunológicos , Interferones
17.
Nat Cell Biol ; 24(3): 307-315, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35288656

RESUMEN

Tumourigenesis and cancer progression require enhanced global protein translation1-3. Such enhanced translation is caused by oncogenic and tumour-suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes, including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour-suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase-along with its downstream cognate tRNAs-elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.


Asunto(s)
Aminoacil-ARNt Sintetasas , Neoplasias de la Mama , Leucina-ARNt Ligasa , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Neoplasias de la Mama/genética , Codón/genética , Femenino , Humanos , Leucina-ARNt Ligasa/metabolismo , Glicoproteínas de Membrana , Ratones , ARN de Transferencia/metabolismo
18.
Sci Adv ; 7(41): eabi7511, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613776

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels, and induces tumor apoptosis. RGX-202 suppressed CRC growth across KRAS wild-type and KRAS mutant xenograft, syngeneic, and patient-derived xenograft (PDX) tumors. Antitumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5-fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in patients with metastatic CRC in a phase 1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of preclinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, thus revealing a critical therapeutic target.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Colorrectales , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias Colorrectales/patología , Creatina/metabolismo , Creatina/farmacología , Creatina/uso terapéutico , Humanos , Proteínas de Transporte de Membrana , Ratones , Ratones Desnudos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
19.
EMBO J ; 40(2): e106696, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33346941

RESUMEN

Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.


Asunto(s)
Codón/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Tirosina/genética , Animales , Caenorhabditis elegans/genética , Línea Celular , Proliferación Celular/genética , Células HEK293 , Humanos , Estrés Oxidativo/genética , Proteasas Ubiquitina-Específicas/genética
20.
Nature ; 586(7828): 299-304, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999457

RESUMEN

Blood vessels support tumours by providing nutrients and oxygen, while also acting as conduits for the dissemination of cancer1. Here we use mouse models of breast and lung cancer to investigate whether endothelial cells also have active 'instructive' roles in the dissemination of cancer. We purified genetically tagged endothelial ribosomes and their associated transcripts from highly and poorly metastatic tumours. Deep sequencing revealed that metastatic tumours induced expression of the axon-guidance gene Slit2 in endothelium, establishing differential expression between the endothelial (high Slit2 expression) and tumoural (low Slit2 expression) compartments. Endothelial-derived SLIT2 protein and its receptor ROBO1 promoted the migration of cancer cells towards endothelial cells and intravasation. Deleting endothelial Slit2 suppressed metastatic dissemination in mouse models of breast and lung cancer. Conversely, deletion of tumoural Slit2 enhanced metastatic progression. We identified double-stranded RNA derived from tumour cells as an upstream signal that induces expression of endothelial SLIT2 by acting on the RNA-sensing receptor TLR3. Accordingly, a set of endogenous retroviral element RNAs were upregulated in metastatic cells and detected extracellularly. Thus, cancer cells co-opt innate RNA sensing to induce a chemotactic signalling pathway in endothelium that drives intravasation and metastasis. These findings reveal that endothelial cells have a direct instructive role in driving metastatic dissemination, and demonstrate that a single gene (Slit2) can promote or suppress cancer progression depending on its cellular source.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Endotelio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Proteínas del Tejido Nervioso/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Quimiotaxis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Metástasis de la Neoplasia/genética , Proteínas del Tejido Nervioso/genética , ARN Bicatenario , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Receptor Toll-Like 3/deficiencia , Receptor Toll-Like 3/genética , Células Tumorales Cultivadas , Proteínas Roundabout
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA