Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 286: 109895, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890432

RESUMEN

First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Maori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.


Asunto(s)
Picornaviridae , Spheniscidae , Estomatitis , Animales , Corynebacterium , Spheniscidae/microbiología , Spheniscidae/virología , Estomatitis/veterinaria
2.
Virology ; 579: 75-83, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608597

RESUMEN

Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Maori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.


Asunto(s)
Virus de la Anemia del Pollo , Gyrovirus , Spheniscidae , Animales , Pollos , Nueva Zelanda/epidemiología
3.
J Wildl Dis ; 59(1): 172-175, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602817

RESUMEN

Toxoplasma gondii has been reported as a cause of morbidity and mortality in New Zealand's native avifauna, including the ground-dwelling Kiwi (Apteryx spp.). To better understand the extent of T. gondii infection in Little Spotted Kiwi (Apteryx owenii), a prevalence survey of kiwi living inside a 200-ha predator-proof mainland ecosanctuary (Zealandia Te Mara a Tane, Wellington, New Zealand) was undertaken. Antibodies to T. gondii were detected by a latex agglutination test (LAT) with a cutoff positive titer of ≥1:64, and T. gondii DNA was detected by PCR. In total, 16/19 (84.2%) birds tested were positive for T. gondii by LAT (10/11), PCR (10/19), or both (4/11). Antibody titers ranged from 1:32 to ≥1:2,048. These results suggest widespread exposure of T. gondii in this population of Little Spotted Kiwi and, in conjunction with earlier reports of toxoplasmosis causing mortality in kiwi, raise important questions as to the effect this parasite may be having on this rare endemic species. Further information on the epidemiology of T. gondii infections within free-living and managed kiwi populations is urgently needed.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Animales , Prevalencia , Reacción en Cadena de la Polimerasa/veterinaria , Nueva Zelanda , Toxoplasmosis Animal/epidemiología , Anticuerpos Antiprotozoarios , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...