Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Eur Respir J ; 63(1)2024 01.
Article En | MEDLINE | ID: mdl-37918852

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Idiopathic Pulmonary Fibrosis , Animals , Humans , Mice , Bleomycin , Chemokine CXCL6/metabolism , Chemokines/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology
2.
Sci Rep ; 13(1): 13076, 2023 08 11.
Article En | MEDLINE | ID: mdl-37567908

Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n = 145), ILD (n = 144) and controls (n = 64). Five distinct subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters which associated with different clinical measurements of disease severity. Utilizing 262 samples with gene expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. Genes associated with miR-449/34 members in the disease networks were enriched among genes that increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.


Lung Diseases, Interstitial , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Lung/pathology , Lung Diseases, Interstitial/metabolism , Genomics
3.
Thorax ; 76(4): 335-342, 2021 04.
Article En | MEDLINE | ID: mdl-33479043

BACKGROUND: Pentraxin 3 (PTX3) influences innate immunity and inflammation, host defence, the complement cascade and angiogenesis. PTX3 expression in lung and blood of subjects with tobacco exposure, and its potential relationship with disease pattern and clinical outcome are poorly understood. METHODS: Using independent platforms and cohorts, we identified associations of PTX3 gene expression in lung tissue and plasma from current and former tobacco smokers (with and without chronic obstructive pulmonary disease, COPD) to disease phenotypes including quantitative CT determined emphysema, lung function, symptoms and survival. Two putative regulatory variants of the PTX3 gene were examined for association with COPD manifestations. The relationship between plasma PTX3 and hyaluronic acid levels was further examined. RESULTS: PTX3 gene expression in lung tissue was directly correlated with emphysema severity (p<0.0001). Circulating levels of PTX3 were inversely correlated with FEV1 (p=0.006), and positively associated with emphysema severity (p=0.004) and mortality (p=0.008). Two PTX3 gene regulatory variants were associated with a lower risk for emphysema and expiratory airflow obstruction, and plasma levels of PTX3 and hyaluronic acid were related. CONCLUSIONS: These data show strong and overlapping associations of lung and blood PTX3 levels, and PTX3 regulatory gene variants, with the severity of airflow obstruction, emphysema and mortality among smokers. These findings have potential implications regarding the pathogenesis of smoking-related lung diseases and warrant further exploration for the use of PTX3 as a predictive biomarker.


C-Reactive Protein/metabolism , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/mortality , Serum Amyloid P-Component/metabolism , Smokers , Adult , Aged , Biomarkers/metabolism , C-Reactive Protein/genetics , Female , Gene Expression , Humans , Hyaluronic Acid/metabolism , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/physiopathology , Respiratory Function Tests , Serum Amyloid P-Component/genetics , Survival Rate , Tomography, X-Ray Computed
4.
Case Rep Crit Care ; 2020: 8875330, 2020.
Article En | MEDLINE | ID: mdl-33133702

BACKGROUND: Patients with severe COVID-19 pneumonia are hypercoagulable and are at risk for acute pulmonary embolism. Timely diagnosis is imperative for their prognosis and recovery. This case describes an otherwise healthy 55-year-old man with respiratory failure requiring mechanical ventilatory support secondary to COVID-19 pneumonia. Massive acute pulmonary embolism with right heart failure complicated his course. CASE: A healthy 55-year-old man presented to our emergency department (ED) with a sore throat, cough, and myalgia. A nasopharyngeal swab was obtained, and he was discharged for home quarantine. His swab turned positive for SARS-CoV-2 infection on real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR) on day 2 of his ED visit. A week later, he represented with worsening shortness of breath, requiring intubation for hypoxic respiratory failure due to COVID-19 pneumonia. Initially, he was easy to oxygenate, had no hemodynamic compromise, and was afebrile. On day 3, he became febrile and developed significant hemodynamic instability requiring maximum vasopressor support and oxygenation difficulty. His ECG revealed sinus tachycardia with S1Q3T3 pattern. On bedside TTE, there was evidence of right heart strain and elevated pulmonary artery systolic pressure of 45 mmHg. All data was indicative of a massive APE as the etiology for his hemodynamic collapse. A decision was made to forgo computed tomography pulmonary angiography (CTPA), given his clinical instability, and systemic thrombolytic therapy was administered. Within the next 12-24 hours, his hemodynamic status significantly improved. CONCLUSIONS: This case highlights the importance of considering massive APE in COVID-19 patients as a cause of the sudden and rapid hemodynamic decline. Furthermore, timely diagnosis can be made to aid in appropriate management with the help of bedside TTE and ECG in cases where CTPA is not feasible secondary to the patient's hemodynamic instability.

5.
Respir Med Case Rep ; 27: 100853, 2019.
Article En | MEDLINE | ID: mdl-31193387

Aspergillomas growing in pre-existing lung cavities can lead to presentations of hemoptysis. We present a case of a 73-year-old male with non-small cell lung carcinoma (NSCLC) and known 4 cm left cavitary lesion in the left upper lobe presenting with cough and hemoptysis, leading to the diagnosis of a pulmonary aspergilloma complicated by chest wall subcutaneous emphysema due to cavitary-subcutaneous fistula in the setting of excessive cough. This case sheds light on subcutaneous emphysema as a potential rare complication of aspergillomas in patients without prior trauma.

6.
Am J Respir Crit Care Med ; 200(7): 837-856, 2019 10 01.
Article En | MEDLINE | ID: mdl-31161938

Rationale: Gene expression of BAL cells, which samples the cellular milieu within the lower respiratory tract, has not been well studied in severe asthma.Objectives: To identify new biomolecular mechanisms underlying severe asthma by an unbiased, detailed interrogation of global gene expression.Methods: BAL cell expression was profiled in 154 asthma and control subjects. Of these participants, 100 had accompanying airway epithelial cell gene expression. BAL cell expression profiles were related to participant (age, sex, race, and medication) and sample traits (cell proportions), and then severity-related gene expression determined by correlating transcripts and coexpression networks to lung function, emergency department visits or hospitalizations in the last year, medication use, and quality-of-life scores.Measurements and Main Results: Age, sex, race, cell proportions, and medications strongly influenced BAL cell gene expression, but leading severity-related genes could be determined by carefully identifying and accounting for these influences. A BAL cell expression network enriched for cAMP signaling components most differentiated subjects with severe asthma from other subjects. Subsequently, an in vitro cellular model showed this phenomenon was likely caused by a robust upregulation in cAMP-related expression in nonsevere and ß-agonist-naive subjects given a ß-agonist before cell collection. Interestingly, ELISAs performed on BAL lysates showed protein levels may partly disagree with expression changes.Conclusions: Gene expression in BAL cells is influenced by factors seldomly considered. Notably, ß-agonist exposure likely had a strong and immediate impact on cellular gene expression, which may not translate to important disease mechanisms or necessarily match protein levels. Leading severity-related genes were discovered in an unbiased, system-wide analysis, revealing new targets that map to asthma susceptibility loci.


Asthma/genetics , Bronchoalveolar Lavage Fluid/cytology , Gene Expression/genetics , Adrenergic beta-Agonists/pharmacology , Adult , Asthma/metabolism , Case-Control Studies , Cyclic AMP/metabolism , Eosinophils/metabolism , Epithelial Cells/metabolism , Female , Gene Expression/drug effects , Humans , In Vitro Techniques , Lymphocytes/metabolism , Macrophages, Alveolar/metabolism , Male , Neutrophils/metabolism , Sequence Analysis, RNA , Severity of Illness Index , Signal Transduction/genetics , THP-1 Cells/metabolism
7.
Eur Respir J ; 52(4)2018 10.
Article En | MEDLINE | ID: mdl-30190272

Inadequate DNA repair is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the mechanisms that underlie inadequate DNA repair in COPD are poorly understood. We applied an integrative genomic approach to identify DNA repair genes and pathways associated with COPD severity.We measured the transcriptomic changes of 419 genes involved in DNA repair and DNA damage tolerance that occur with severe COPD in three independent cohorts (n=1129). Differentially expressed genes were confirmed with RNA sequencing and used for patient clustering. Clinical and genome-wide transcriptomic differences were assessed following cluster identification. We complemented this analysis by performing gene set enrichment analysis, Z-score and weighted gene correlation network analysis to identify transcriptomic patterns of DNA repair pathways associated with clinical measurements of COPD severity.We found 15 genes involved in DNA repair and DNA damage tolerance to be differentially expressed in severe COPD. K-means clustering of COPD cases based on this 15-gene signature identified three patient clusters with significant differences in clinical characteristics and global transcriptomic profiles. Increasing COPD severity was associated with downregulation of the nucleotide excision repair pathway.Systematic analysis of the lung tissue transcriptome of individuals with severe COPD identified DNA repair responses associated with disease severity that may underlie COPD pathogenesis.


DNA Repair/genetics , Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Transcriptome , Aged , DNA Damage , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology
8.
J Immunol ; 198(6): 2269-2285, 2017 03 15.
Article En | MEDLINE | ID: mdl-28179498

Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.


Chemokine CXCL12/metabolism , Fibroblasts/physiology , Idiopathic Pulmonary Fibrosis/immunology , Lung/pathology , Mesenchymal Stem Cells/pathology , T-Lymphocytes/immunology , Twist-Related Protein 1/metabolism , Aged , Animals , Bleomycin , Cells, Cultured , Chemokine CXCL12/genetics , Collagen Type I/metabolism , Female , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Mice , Mice, Knockout , Middle Aged , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Twist-Related Protein 1/genetics , Up-Regulation
9.
Am J Respir Crit Care Med ; 195(11): 1449-1463, 2017 06 01.
Article En | MEDLINE | ID: mdl-27984699

RATIONALE: Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. OBJECTIVES: Identify networks of genes reflective of underlying biological processes that define SA. METHODS: Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. MEASUREMENTS AND MAIN RESULTS: Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. CONCLUSIONS: In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.


Asthma/genetics , Asthma/immunology , Gene Expression/genetics , Gene Expression/immunology , Adult , Asthma/physiopathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
10.
Am J Respir Crit Care Med ; 194(11): 1392-1402, 2016 12 01.
Article En | MEDLINE | ID: mdl-27310652

RATIONALE: Relaxin is a hormone that has been considered as a potential therapy for patients with fibrotic diseases. OBJECTIVES: To gauge the potential efficacy of relaxin-based therapies in idiopathic pulmonary fibrosis (IPF), we studied gene expression for relaxin/insulin-like family peptide receptor 1 (RXFP1) in IPF lungs and controls. METHODS: We analyzed gene expression data obtained from the Lung Tissue Research Consortium and correlated RXFP1 gene expression data with cross-sectional clinical and demographic data. We also employed ex vivo donor and IPF lung fibroblasts to test RXFP1 expression in vitro. We tested CGEN25009, a relaxin-like peptide, in lung fibroblasts and in bleomycin injury. MEASUREMENTS AND MAIN RESULTS: We found that RXFP1 is significantly decreased in IPF. In patients with IPF, the magnitude of RXFP1 gene expression correlated directly with diffusing capacity of the lung for carbon monoxide (P < 0.0001). Significantly less RXFP1 was detected in vitro in IPF fibroblasts than in donor controls. Transforming growth factor-ß decreased RXFP1 in both donor and IPF lung fibroblasts. CGEN25009 was effective at decreasing bleomycin-induced, acid-soluble collagen deposition in vivo. The relaxin-like actions of CGEN25009 were abrogated by RXFP1 silencing in vitro, and, in comparison with donor lung fibroblasts, IPF lung fibroblasts exhibited decreased sensitivity to the relaxin-like effects of CGEN25009. CONCLUSIONS: IPF is characterized by the loss of RXFP1 expression. RXFP1 expression is directly associated with pulmonary function in patients with IPF. The relaxin-like effects of CGEN25009 in vitro are dependent on expression of RXFP1. Our data suggest that patients with IPF with the highest RXFP1 expression would be predicted to be most sensitive to relaxin-based therapies.


Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Relaxin/therapeutic use , Cross-Sectional Studies , Female , Gene Expression/genetics , Humans , Idiopathic Pulmonary Fibrosis/physiopathology , Immunoblotting , Lung/physiopathology , Male , Microarray Analysis , Middle Aged
11.
Am J Respir Crit Care Med ; 194(8): 948-960, 2016 10 15.
Article En | MEDLINE | ID: mdl-27104832

RATIONALE: Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. OBJECTIVES: We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. METHODS: We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). MEASUREMENTS AND MAIN RESULTS: Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. CONCLUSIONS: Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.


Gene Regulatory Networks/genetics , Idiopathic Pulmonary Fibrosis/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Adult , Emphysema/genetics , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , I-kappa B Proteins/metabolism , Male , Membrane Proteins/metabolism , Middle Aged , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism
12.
BMC Genomics ; 16: 924, 2015 Nov 11.
Article En | MEDLINE | ID: mdl-26560100

BACKGROUND: The increased multi-omics information on carefully phenotyped patients in studies of complex diseases requires novel methods for data integration. Unlike continuous intensity measurements from most omics data sets, phenome data contain clinical variables that are binary, ordinal and categorical. RESULTS: In this paper we introduce an integrative phenotyping framework (iPF) for disease subtype discovery. A feature topology plot was developed for effective dimension reduction and visualization of multi-omics data. The approach is free of model assumption and robust to data noises or missingness. We developed a workflow to integrate homogeneous patient clustering from different omics data in an agglomerative manner and then visualized heterogeneous clustering of pairwise omics sources. We applied the framework to two batches of lung samples obtained from patients diagnosed with chronic obstructive lung disease (COPD) or interstitial lung disease (ILD) with well-characterized clinical (phenomic) data, mRNA and microRNA expression profiles. Application of iPF to the first training batch identified clusters of patients consisting of homogenous disease phenotypes as well as clusters with intermediate disease characteristics. Analysis of the second batch revealed a similar data structure, confirming the presence of intermediate clusters. Genes in the intermediate clusters were enriched with inflammatory and immune functional annotations, suggesting that they represent mechanistically distinct disease subphenotypes that may response to immunomodulatory therapies. The iPF software package and all source codes are publicly available. CONCLUSIONS: Identification of subclusters with distinct clinical and biomolecular characteristics suggests that integration of phenomic and other omics information could lead to identification of novel mechanism-based disease sub-phenotypes.


Computational Biology/methods , Phenotype , Algorithms , Cluster Analysis , Computer Simulation , Datasets as Topic , Discriminant Analysis , Genomics/methods , Humans , Lung Diseases/etiology , Lung Diseases/metabolism , Molecular Sequence Annotation , Workflow
13.
Cell Signal ; 27(12): 2467-73, 2015 Dec.
Article En | MEDLINE | ID: mdl-26386411

Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease of unknown etiology. We previously reported that high plasma levels of vascular cell adhesion molecule 1 (VCAM-1) predict mortality in IPF subjects. Here we investigated the cellular origin and potential role of VCAM-1 in regulating primary lung fibroblast behavior. VCAM-1 mRNA was significantly increased in lungs of subjects with IPF compared to lungs from control subjects (p=0.001), and it negatively correlated with two markers of lung function, forced vital capacity (FVC) and pulmonary diffusion capacity for carbon monoxide (DLCO). VCAM-1 protein levels were highly expressed in IPF subjects where it was detected in fibrotic foci and blood vessels of IPF lung. Treatment of human lung fibroblasts with TGF-ß1 significantly increased steady-state VCAM1 mRNA and protein levels without affecting VCAM1 mRNA stability. Further, cellular depletion of VCAM-1 inhibited fibroblast cell proliferation and reduced G2/M and S phases of the cell cycle suggestive of cell cycle arrest. These effects on cell cycle progression triggered by VCAM1 depletion were associated with reductions in levels of phosphorylated extracellular regulated kinase 1/2 and cyclin D1. Thus, these observations suggest that VCAM-1 is a TGF-ß1 responsive mediator that partakes in fibroblast proliferation in subjects with IPF.


Idiopathic Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/physiology , Vascular Cell Adhesion Molecule-1/genetics , Aged , Animals , Cell Proliferation , Female , Fibroblasts/physiology , Humans , Lung/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Protein Transport , Transcriptional Activation , Up-Regulation , Vascular Cell Adhesion Molecule-1/metabolism
14.
J Clin Invest ; 125(6): 2458-62, 2015 Jun.
Article En | MEDLINE | ID: mdl-25938787

Cigarette smoke (CS) and viruses promote the inflammation and remodeling associated with chronic obstructive pulmonary disease (COPD). The MAVS/RIG-I-like helicase (MAVS/RLH) pathway and inflammasome-dependent innate immune pathways are important mediators of these responses. At baseline, the MAVS/RLH pathway is suppressed, and this inhibition must be reversed to engender tissue effects; however, the mechanisms that mediate activation and repression of the pathway have not been defined. In addition, the regulation and contribution of MAVS/RLH signaling in CS-induced inflammation and remodeling responses and in the development of human COPD remain unaddressed. Here, we demonstrate that expression of NLRX1, which inhibits the MAVS/RLH pathway and regulates other innate immune responses, was markedly decreased in 3 independent cohorts of COPD patients. NLRX1 suppression correlated directly with disease severity and inversely with pulmonary function, quality of life, and prognosis. In murine models, CS inhibited NLRX1, and CS-induced inflammation, alveolar destruction, protease induction, structural cell apoptosis, and inflammasome activation were augmented in NLRX1-deficient animals. Conversely, MAVS deficiency abrogated this CS-induced inflammation and remodeling. Restoration of NLRX1 in CS-exposed animals ameliorated alveolar destruction. These data support a model in which CS-dependent NLRX1 inhibition facilitates MAVS/RHL activation and subsequent inflammation, remodeling, protease, cell death, and inflammasome responses.


Mitochondrial Proteins/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Mitochondrial Proteins/genetics , Pulmonary Alveoli/pathology , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Immunologic , Smoking/adverse effects , Smoking/genetics , Smoking/metabolism
15.
Am J Respir Cell Mol Biol ; 52(2): 217-31, 2015 Feb.
Article En | MEDLINE | ID: mdl-25029475

The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-ß1-treated primary human lung fibroblasts and transforming growth factor-ß1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.


Epithelial Cells/pathology , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology , Signal Transduction/genetics , Animals , Bleomycin/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression/physiology , Genomics , Humans , Lung/metabolism , Protein Biosynthesis , Rats, Sprague-Dawley
16.
RNA ; 21(2): 164-71, 2015 Feb.
Article En | MEDLINE | ID: mdl-25519487

Small RNA sequencing can be used to gain an unprecedented amount of detail into the microRNA transcriptome. The relatively high cost and low throughput of sequencing bases technologies can potentially be offset by the use of multiplexing. However, multiplexing involves a trade-off between increased number of sequenced samples and reduced number of reads per sample (i.e., lower depth of coverage). To assess the effect of different sequencing depths owing to multiplexing on microRNA differential expression and detection, we sequenced the small RNA of lung tissue samples collected in a clinical setting by multiplexing one, three, six, nine, or 12 samples per lane using the Illumina HiSeq 2000. As expected, the numbers of reads obtained per sample decreased as the number of samples in a multiplex increased. Furthermore, after normalization, replicate samples included in distinct multiplexes were highly correlated (R > 0.97). When detecting differential microRNA expression between groups of samples, microRNAs with average expression >1 reads per million (RPM) had reproducible fold change estimates (signal to noise) independent of the degree of multiplexing. The number of microRNAs detected was strongly correlated with the log2 number of reads aligning to microRNA loci (R = 0.96). However, most additional microRNAs detected in samples with greater sequencing depth were in the range of expression which had lower fold change reproducibility. These findings elucidate the trade-off between increasing the number of samples in a multiplex with decreasing sequencing depth and will aid in the design of large-scale clinical studies exploring microRNA expression and its role in disease.


MicroRNAs/metabolism , Gene Expression Profiling , Humans , Lung/metabolism , MicroRNAs/genetics , Sequence Analysis, RNA , Transcriptome
17.
Am J Respir Crit Care Med ; 190(11): 1263-72, 2014 Dec 01.
Article En | MEDLINE | ID: mdl-25333685

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is an untreatable and often fatal lung disease that is increasing in prevalence and is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control gene expression and are likely to regulate the IPF transcriptome. OBJECTIVES: To identify methylation marks that modify gene expression in IPF lung. METHODS: We assessed DNA methylation (comprehensive high-throughput arrays for relative methylation arrays [CHARM]) and gene expression (Agilent gene expression arrays) in 94 patients with IPF and 67 control subjects, and performed integrative genomic analyses to define methylation-gene expression relationships in IPF lung. We validated methylation changes by a targeted analysis (Epityper), and performed functional validation of one of the genes identified by our analysis. MEASUREMENTS AND MAIN RESULTS: We identified 2,130 differentially methylated regions (DMRs; <5% false discovery rate), of which 738 are associated with significant changes in gene expression and enriched for expected inverse relationship between methylation and expression (P < 2.2 × 10(-16)). We validated 13/15 DMRs by targeted analysis of methylation. Methylation-expression quantitative trait loci (methyl-eQTL) identified methylation marks that control cis and trans gene expression, with an enrichment for cis relationships (P < 2.2 × 10(-16)). We found five trans methyl-eQTLs where a methylation change at a single DMR is associated with transcriptional changes in a substantial number of genes; four of these DMRs are near transcription factors (castor zinc finger 1 [CASZ1], FOXC1, MXD4, and ZDHHC4). We studied the in vitro effects of change in CASZ1 expression and validated its role in regulation of target genes in the methyl-eQTL. CONCLUSIONS: These results suggest that DNA methylation may be involved in the pathogenesis of IPF.


DNA Methylation/genetics , Epigenesis, Genetic/physiology , Idiopathic Pulmonary Fibrosis/genetics , Quantitative Trait Loci/genetics , Transcriptome/genetics , Adrenal Cortex Hormones/therapeutic use , Case-Control Studies , Female , Gene Expression , Genetic Markers , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Smoking/epidemiology
18.
Am J Respir Crit Care Med ; 190(12): 1363-72, 2014 Dec 15.
Article En | MEDLINE | ID: mdl-25338189

RATIONALE: Although asthma is recognized as a heterogeneous disease associated with clinical phenotypes, the molecular basis of these phenotypes remains poorly understood. Although genomic studies have successfully broadened our understanding in diseases such as cancer, they have not been widely used in asthma studies. OBJECTIVES: To link gene expression patterns to clinical asthma phenotypes. METHODS: We used a microarray platform to analyze bronchial airway epithelial cell gene expression in relation to the asthma biomarker fractional exhaled nitric oxide (FeNO) in 155 subjects with asthma and healthy control subjects from the Severe Asthma Research Program (SARP). MEASUREMENTS AND MAIN RESULTS: We first identified a diverse set of 549 genes whose expression correlated with FeNO. We used k-means to cluster the patient samples according to the expression of these genes, identifying five asthma clusters/phenotypes with distinct clinical, physiological, cellular, and gene transcription characteristics-termed "subject clusters" (SCs). To then investigate differences in gene expression between SCs, a total of 1,384 genes were identified that highly differentiated the SCs at an unadjusted P value < 10(-6). Hierarchical clustering of these 1,384 genes identified nine gene clusters or "biclusters," whose coexpression suggested biological characteristics unique to each SC. Although genes related to type 2 inflammation were present, novel pathways, including those related to neuronal function, WNT pathways, and actin cytoskeleton, were noted. CONCLUSIONS: These findings show that bronchial epithelial cell gene expression, as related to the asthma biomarker FeNO, can identify distinct asthma phenotypes, while also suggesting the presence of underlying novel gene pathways relevant to these phenotypes.


Asthma/genetics , Gene Expression/genetics , Nitric Oxide/metabolism , Adult , Asthma/metabolism , Biomarkers , Bronchi/cytology , Bronchi/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Multigene Family/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Real-Time Polymerase Chain Reaction
19.
PLoS One ; 9(5): e96631, 2014.
Article En | MEDLINE | ID: mdl-24800803

PURPOSE: To investigate whether the integrity (completeness) of pulmonary fissures affects pulmonary function in patients with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS: A dataset consisting of 573 CT exams acquired on different subjects was collected from a COPD study. According to the global initiative for chronic obstructive lung disease (GOLD) criteria, these subjects (examinations) were classified into five different subgroups, namely non-COPD (222 subjects), GOLD-I (83 subjects), GOLD-II (141 subjects), GOLD-III (63 subjects), and GOLD-IV (64 subjects), in terms of disease severity. An available computer tool was used to aid in an objective and efficient quantification of fissure integrity. The correlations between fissure integrity, and pulmonary functions (e.g., FEV1, and FEV1/FVC) and COPD severity were assessed using Pearson and Spearman's correlation coefficients, respectively. RESULTS: For the five sub-groups ranging from non-COPD to GOLD-IV, the average integrities of the right oblique fissure (ROF) were 81.8%, 82.4%, 81.8%, 82.8%, and 80.2%, respectively; the average integrities of the right horizontal fissure (RHF) were 62.6%, 61.8%, 62.1%, 62.2%, and 62.3%, respectively; the average integrities of the left oblique fissure (LOF) were 82.0%, 83.2%, 81.7%, 82.0%, and 78.4%, respectively; and the average integrities of all fissures in the entire lung were 78.0%, 78.6%, 78.1%, 78.5%, and 76.4%, respectively. Their Pearson correlation coefficients with FEV1 and FE1/FVC range from 0.027 to 0.248 with p values larger than 0.05. Their Spearman correlation coefficients with COPD severity except GOLD-IV range from -0.013 to -0.073 with p values larger than 0.08. CONCLUSION: There is no significant difference in fissure integrity for patients with different levels of disease severity, suggesting that the development of COPD does not change the completeness of pulmonary fissures and incomplete fissures alone may not contribute to the collateral ventilation.


Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Algorithms , Female , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Male , Middle Aged , Prevalence , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Ventilation , Severity of Illness Index , Tomography, X-Ray Computed
20.
Am J Respir Crit Care Med ; 189(8): 966-74, 2014 Apr 15.
Article En | MEDLINE | ID: mdl-24628285

RATIONALE: C-X-C motif chemokine 13 (CXCL13) mediates B-cell trafficking and is increased, proportionately to disease activity, in many antibody-mediated syndromes. Dysregulated B cells have recently been implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. OBJECTIVES: To determine if CXCL13 is associated with IPF progression. METHODS: CXCL13 was measured in lungs by DNA microarray and immunohistochemistry, and in plasma by ELISA. MEASUREMENTS AND MAIN RESULTS: CXCL13 mRNA was threefold and eightfold greater in IPF lungs (n = 92) compared with chronic obstructive pulmonary disease (COPD) (n = 191) and normal (n = 108) specimens, respectively (P < 0.0001). IPF lungs also showed increased CXCL13 staining. Plasma CXCL13 concentrations (pg/ml) were greater in 95 patients with IPF (94 ± 8) than in 128 subjects with COPD (53 ± 9) and 57 normal subjects (35 ± 3) (P < 0.0001). Circulating CXCL13 levels were highest in patients with IPF with pulmonary artery hypertension (P = 0.01) or acute exacerbations (P = 0.002). Six-month survival of patients with IPF in the highest quartile of plasma CXCL13 was 65 ± 10% versus 93 ± 10% in the others (hazard ratio, 5.5; 95% confidence interval, 1.8-16.9; P = 0.0008). CXCL13 increases by more than 50% in IPF serial assays, irrespective of initial values, also presaged respiratory failure (hazard ratio, 7.2; 95% confidence interval, 1.3-40.0; P = 0.008). In contrast, CXCL13 clinical associations in subjects with COPD were limited to modest correlations with FEV1 (P = 0.05) and progression of radiographic emphysema (P = 0.05). CONCLUSIONS: CXCL13 is increased and is a prognostic biomarker in patients with IPF, and more so than in patients with COPD. This contrast indicates CXCL13 overexpressions are intrinsic to IPF, rather than an epiphenomenon of lung injury. The present data implicate CXCL13 and B cells in IPF pathogenesis, and support considerations for trials of specific B-cell-targeted therapies in patients with this intractable disease.


Chemokine CXCL13/analysis , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/diagnosis , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Chemokine CXCL13/blood , Chemokine CXCL13/genetics , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/mortality , Immunohistochemistry , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Predictive Value of Tests , Prognosis , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Risk Factors , Sensitivity and Specificity , Severity of Illness Index
...