Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37674261

RESUMEN

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Asunto(s)
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilación de la Expresión Génica , Árboles/genética
2.
Front Plant Sci ; 14: 1227219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645465

RESUMEN

Anthocyanins are responsible for the color spectrum of both ornamental and natural flowers. However, not all plant species produce all colors. For example, roses are not blue because they do not naturally possess a hydroxylase that opens the pathway for delphinidin and its derivatives. It is more intriguing why some plants do not carry orange or scarlet red flowers with anthocyanins based on pelargonidin, because the precursor for these anthocyanins should be available if anthocyanins are made at all. The key to this is the substrate specificity of dihydroflavonol 4-reductase (DFR), an enzyme located at the branch point between flavonols and anthocyanins. The most common example is petunia, which does not bear orange flowers unless the enzyme is complemented by biotechnology. We changed a few amino acids in the active site of the enzyme and showed that the mutated petunia DFR started to favor dihydrokaempferol, the precursor to orange pelargonidin, in vitro. When transferred to petunia, it produced an orange hue and dramatically more pelargonidin-based anthocyanins in the flowers.

3.
Sci Rep ; 12(1): 17562, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266299

RESUMEN

Poison hemlock (Conium maculatum L.) is a notorious weed containing the potent alkaloid coniine. Only some of the enzymes in the coniine biosynthesis have so far been characterized. Here, we utilize the next-generation RNA sequencing approach to report the first-ever transcriptome sequencing of five organs of poison hemlock: developing fruit, flower, root, leaf, and stem. Using a de novo assembly approach, we derived a transcriptome assembly containing 123,240 transcripts. The assembly is deemed high quality, representing over 88% of the near-universal ortholog genes of the Eudicots clade. Nearly 80% of the transcripts were functionally annotated using a combination of three approaches. The current study focuses on describing the coniine pathway by identifying in silico transcript candidates for polyketide reductase, L-alanine:5-keto-octanal aminotransferase, γ-coniceine reductase, and S-adenosyl-L-methionine:coniine methyltransferase. In vitro testing will be needed to confirm the assigned functions of the selected candidates.


Asunto(s)
Alcaloides , Conium , Transcriptoma , S-Adenosilmetionina , Oxidorreductasas , Transaminasas , Metiltransferasas/genética , Alanina
4.
Front Plant Sci ; 13: 978586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311083

RESUMEN

Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.

5.
New Phytol ; 236(1): 296-308, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719102

RESUMEN

Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.


Asunto(s)
Asteraceae , Policétidos , Asteraceae/genética , Glucósidos , Plantas Modificadas Genéticamente/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Pironas
6.
Hortic Res ; 8(1): 207, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34593769

RESUMEN

The structurally robust biopolymer sporopollenin is the major constituent of the exine layer of pollen wall and plays a vital role in plant reproductive success. The sporopollenin precursors are synthesized through an ancient polyketide biosynthetic pathway consisting of a series of anther-specific enzymes that are widely present in all land plant lineages. Tetraketide α-pyrone reductase 1 (TKPR1) and TKPR2 are two reductases catalyzing the final reduction of the carbonyl group of the polyketide synthase-synthesized tetraketide intermediates to hydroxylated α-pyrone compounds, important precursors of sporopollenin. In contrast to the functional conservation of many sporopollenin biosynthesis associated genes confirmed in diverse plant species, TKPR2's role has been addressed only in Arabidopsis, where it plays a minor role in sporopollenin biosynthesis. We identified in gerbera two non-anther-specific orthologues of AtTKPR2, Gerbera reductase 1 (GRED1) and GRED2. Their dramatically expanded expression pattern implies involvement in pathways outside of the sporopollenin pathway. In this study, we show that GRED1 and GRED2 are still involved in sporopollenin biosynthesis with a similar secondary role as AtTKPR2 in Arabidopsis. We further show that this secondary role does not relate to the promoter of the gene, AtTKPR2 cannot rescue pollen development in Arabidopsis even when controlled by the AtTKPR1 promoter. We also identified the gerbera orthologue of AtTKPR1, GTKPR1, and characterized its crucial role in gerbera pollen development. GTKPR1 is the predominant TKPR in gerbera pollen wall formation, in contrast to the minor roles GRED1 and GRED2. GTKPR1 is in fact an excellent target for engineering male-sterile gerbera cultivars in horticultural plant breeding.

7.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33771923

RESUMEN

Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.


Asunto(s)
Asteraceae/fisiología , Inflorescencia/crecimiento & desarrollo , Organogénesis de las Plantas , Asteraceae/anatomía & histología , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Inflorescencia/anatomía & histología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
8.
Sci Rep ; 11(1): 3778, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580160

RESUMEN

We studied the stress response of five-year-old Scots pine xylem to mechanical wounding using RNA sequencing. In general, we observed a bimodal response in pine xylem after wounding. Transcripts associated with water deficit stress, defence, and cell wall modification were induced at the earliest time point of three hours; at the same time, growth-related processes were down-regulated. A second temporal wave was triggered either at the middle and/or at the late time points (one and four days). Secondary metabolism, such as stilbene and lignan biosynthesis started one day after wounding. Scots pine synthesises the stilbenes pinosylvin and its monomethyl ether both as constitutive and induced defence compounds. Stilbene biosynthesis is induced by wounding, pathogens and UV stress, but is also developmentally regulated when heartwood is formed. Comparison of wounding responses to heartwood formation shows that many induced processes (in addition to stilbene biosynthesis) are similar and relate to defence or desiccation stress, but often specific transcripts are up-regulated in the developmental and wounding induced contexts. Pine resin biosynthesis was not induced in response to wounding, at least not during the first four days.


Asunto(s)
Pinus/genética , Cicatrización de Heridas/genética , Xilema/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Pinus/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Transcriptoma/genética , Cicatrización de Heridas/fisiología , Xilema/metabolismo
9.
Plant Physiol ; 184(3): 1455-1468, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900982

RESUMEN

The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3 Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.


Asunto(s)
Asteraceae/crecimiento & desarrollo , Asteraceae/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
10.
J Exp Bot ; 71(20): 6379-6395, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32777074

RESUMEN

Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissue-cultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the Km value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.


Asunto(s)
Picea , Lignina , Noruega , Proteómica , Xilema
12.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30724367

RESUMEN

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Asunto(s)
Betula/genética , Corteza de la Planta/química , Corteza de la Planta/genética , Tallos de la Planta/genética , Transcriptoma/genética , Betula/crecimiento & desarrollo , Vías Biosintéticas/genética , Cámbium/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lípidos/química , Meristema/genética , Especificidad de Órganos , Especificidad de la Especie , Nicho de Células Madre , Triterpenos/metabolismo , Madera/genética
13.
Methods Mol Biol ; 1696: 13-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086394

RESUMEN

Gaining membrane vesicles from different plant species and tissue types is crucial for membrane studies. Membrane vesicles can be used for further purification of individual membrane types, and, for example, in studies of membrane enzyme activities, transport assays, and in proteomic analysis. Membrane isolation from some species, such as conifers, has proved to be more difficult than that of angiosperm species. In this paper, we describe steps for isolating cellular membranes from developing xylem, phloem, and lignin-forming tissue-cultured cells of Norway spruce, followed by partial enrichment of plasma membranes by aqueous polymer two-phase partitioning and purity analyses. The methods used are partially similar to the ones used for mono- and dicotyledonous plants, but some steps require discreet optimization, probably due to a high content of phenolic compounds present in the tissues and cultured cells of Norway spruce.


Asunto(s)
Fraccionamiento Celular/métodos , Membrana Celular , Picea/citología , Técnicas de Cultivo de Célula , Lignina/metabolismo , Floema/citología , Xilema/citología
14.
Physiol Plant ; 162(2): 219-238, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080293

RESUMEN

Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.


Asunto(s)
Edición Génica/métodos , Genes de Plantas/genética , Fitomejoramiento/métodos , Plantas/genética , Agricultura/legislación & jurisprudencia , Agricultura/métodos , Agricultura/tendencias , Edición Génica/legislación & jurisprudencia , Edición Génica/tendencias , Plantas/clasificación , Plantas Modificadas Genéticamente , Investigación/legislación & jurisprudencia , Investigación/tendencias , Países Escandinavos y Nórdicos
15.
New Phytol ; 216(3): 939-954, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28742220

RESUMEN

The pseudanthial inflorescences of the sunflower family, Asteraceae, mimic a solitary flower but are composed of multiple flowers. Our studies in Gerbera hybrida indicate functional diversification for SEPALLATA (SEP)-like MADS box genes that often function redundantly in other core eudicots. We conducted phylogenetic and expression analysis for eight SEP-like GERBERA REGULATOR OF CAPITULUM DEVELOPMENT (GRCD) genes, including previously unstudied gene family members. Transgenic gerbera plants were used to infer gene functions. Adding to the previously identified stamen and carpel functions for GRCD1 and GRCD2, two partially redundant genes, GRCD4 and GRCD5, were found to be indispensable for petal development. Stepwise conversion of floral organs into leaves in the most severe RNA interference lines suggest redundant and additive GRCD activities in organ identity regulation. We show conserved and redundant functions for several GRCD genes in regulation of flower meristem maintenance, while functional diversification for three SEP1/2/4 clade genes in regulation of inflorescence meristem patterning was observed. GRCD genes show both specialized and pleiotropic functions contributing to organ differentiation and flower meristem fate, and uniquely, to patterning of the inflorescence meristem. Altogether, we provide an example of how plant reproductive evolution has used conserved genetic modules for regulating the elaborate inflorescence architecture in Asteraceae.


Asunto(s)
Asteraceae/genética , Inflorescencia/genética , Proteínas de Plantas/genética , Asteraceae/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Familia de Multigenes , Filogenia , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Interferencia de ARN
16.
Planta ; 246(2): 277-280, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28647812

RESUMEN

MAIN CONCLUSION: Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20 years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Antocianinas/metabolismo , Flores/genética , Petunia/genética , Plantas Modificadas Genéticamente , Oxidorreductasas de Alcohol/metabolismo , Antocianinas/análisis , Cruzamiento , Flores/enzimología , Ingeniería Genética , Petunia/enzimología , Pigmentación , Pigmentos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transgenes
17.
Plant Physiol ; 174(3): 1449-1475, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28522458

RESUMEN

Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Fenoles/metabolismo , Picea/metabolismo , Antioxidantes/metabolismo , Espacio Extracelular/metabolismo , Depuradores de Radicales Libres/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Anotación de Secuencia Molecular , Estrés Oxidativo , Picea/genética , Análisis de Componente Principal , Transducción de Señal , Especificidad por Sustrato , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma/genética
18.
New Phytol ; 214(4): 1537-1550, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28248427

RESUMEN

Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1.


Asunto(s)
Metiltransferasas/genética , Metiltransferasas/metabolismo , Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , Estilbenos/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Metilación , Filogenia , Pinus sylvestris/efectos de la radiación , Proteínas de Plantas/genética , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Xilema/metabolismo
19.
Phytochemistry ; 134: 38-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27884449

RESUMEN

The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.


Asunto(s)
Asteraceae/enzimología , Asteraceae/genética , Flores/metabolismo , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Biopolímeros , Carotenoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Polen/metabolismo , Sintasas Poliquetidas/genética , Pironas/metabolismo , Proteínas Recombinantes/metabolismo
20.
Front Plant Sci ; 7: 1523, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803704

RESUMEN

Lignin, an important component of plant cell walls, is a polymer of monolignols derived from the phenylpropanoid pathway. Monolignols are oxidized in the cell wall by oxidative enzymes (peroxidases and/or laccases) to radicals, which then couple with the growing lignin polymer. We have investigated the characteristics of the polymerization reaction by producing lignin polymers in vitro using different oxidative enzymes and analyzing the structures formed with NMR. The ability of the enzymes to oxidize high-molecular-weight compounds was tested using cytochrome c as a substrate. The results support an idea that lignin structure is largely determined by the concentration ratios of the monolignol (coniferyl alcohol) and polymer radicals involved in the coupling reaction. High rate of the lignin polymer oxidation compared to monolignol oxidation leads to a natural-like structure. The high relative rate can be achieved by an open active site of the oxidative enzyme, close proximity of the enzyme with the polymeric substrate or simply by high enzymatic activity that consumes monolignols rapidly. Monolignols, which are oxidized efficiently, can be seen as competitive inhibitors of polymer oxidation. Our results indicate that, at least in a Norway spruce (Picea abies L. Karst.) cell culture, a group of apoplastic, polymer-oxidizing peroxidases bind to the lignin polymer and are responsible for production of natural-like lignin in cell suspension cultures in vivo, and also in vitro. The peroxidases bound to the extracellular lignin had the highest ability to bind to various cell wall polymers in vitro. Extracellular lignin contains pectin-type sugars, making them possible attachment points for these cationic peroxidases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA