Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947477

RESUMEN

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

2.
Biol Open ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713004

RESUMEN

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the ß-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.


Asunto(s)
Neoplasias del Colon , Ouabaína , Pinocitosis , ATPasa Intercambiadora de Sodio-Potasio , Vía de Señalización Wnt , Neoplasias del Colon/metabolismo , Neoplasias del Colon/etiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Humanos , Ouabaína/farmacología , Línea Celular Tumoral , Xenopus
3.
IUBMB Life ; 76(7): 383-396, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38230869

RESUMEN

Wnt signaling is essential for embryonic development, influencing processes such as axis formation, cell proliferation and differentiation, cell fate decisions, and axon guidance. It also plays a role in maintaining tissue homeostasis in adult organisms. The loss of normal cell polarity and adhesion caused by Wnt signaling activation is a fundamental step for tumor progression and metastasis. Activating the canonical Wnt pathway is a driving force in many human cancers, especially colorectal, hepatocellular, and mammary carcinomas. Wnt causes the stabilization and nuclear transport of newly synthesized transcriptional regulator ß-catenin. The generally accepted view is that the canonical effects of Wnt growth factors are caused by the transcription of ß-catenin target genes. Here, we review recent findings that indicate Wnt is a regulator of many other cellular physiological activities, such as macropinocytosis, endosome trafficking, protein stability, focal adhesions, and lysosomal activity. Some of these regulatory responses occur within minutes and do not require new protein synthesis, indicating that there is much more to Wnt beyond the well-established transcriptional role of ß-catenin. The main conclusion that emerges from these studies is that in basal cell conditions, the activity of the key protein kinase GSK3, which is inhibited by Wnt pathway activation, normally represses the actin machinery that orchestrates macropinocytosis with implications in cancer. These contributions expand our understanding of the multifaceted roles of Wnt signaling in cellular processes, development, and cancer, providing insights into potential therapeutic targets and strategies.


Asunto(s)
Adhesión Celular , Neoplasias del Colon , Vía de Señalización Wnt , Humanos , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Animales , beta Catenina/metabolismo , beta Catenina/genética
4.
iScience ; 26(10): 108075, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860772

RESUMEN

Activation of Wnt signaling triggers macropinocytosis and drives many tumors. We now report that the exogenous addition of the second messenger lipid sn-1,2 DAG to the culture medium rapidly induces macropinocytosis. This is accompanied by potentiation of the effects of added Wnt3a recombinant protein or the glycogen synthase kinase 3 (GSK3) inhibitor lithium chloride (LiCl, which mimics Wnt signaling) in luciferase transcriptional reporter assays. In a colorectal carcinoma cell line in which mutation of adenomatous polyposis coli (APC) causes constitutive Wnt signaling, DAG addition increased levels of nuclear ß-catenin, and this increase was partially inhibited by an inhibitor of macropinocytosis. DAG also expanded multivesicular bodies marked by the tetraspan protein CD63. In an in vivo situation, microinjection of DAG induced Wnt-like twinned body axes when co-injected with small amounts of LiCl into Xenopus embryos. These results suggest that the DAG second messenger plays a role in Wnt-driven cancer progression.

5.
Elife ; 122023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902809

RESUMEN

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.


Asunto(s)
Carcinógenos , Neoplasias , Femenino , Embarazo , Humanos , Animales , Ratones , Vía de Señalización Wnt , Glucógeno Sintasa Quinasa 3 , Ésteres del Forbol , Ésteres
6.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37333286

RESUMEN

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.

7.
STAR Protoc ; 3(3): 101455, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35839770

RESUMEN

The Xenopus embryo provides an advantageous model system where genes can be readily transplanted as DNA or mRNA or depleted with antisense techniques. Here, we present a protocol to culture and image the cell biological properties of explanted Xenopus cap cells in tissue culture. We illustrate how this protocol can be applied to visualize lysosomes, macropinocytosis, focal adhesions, Wnt signaling, and cell migration. For complete details on the use and execution of this protocol, please refer to Tejeda-Muñoz et al. (2022).


Asunto(s)
Vía de Señalización Wnt , Proteínas de Xenopus , Animales , Western Blotting , ARN Mensajero/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Vaccines (Basel) ; 10(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632546

RESUMEN

Membrane trafficking is emerging as an attractive therapeutic strategy for cancer. Recent reports have found a connection between Wnt signaling, receptor-mediated endocytosis, V-ATPase, lysosomal activity, and macropinocytosis through the canonical Wnt pathway. In macropinocytic cells, a massive internalization of the plasma membrane can lead to the loss of cell-surface cadherins, integrins, and other antigens that mediate cell-cell adhesion, favoring an invasive phenotype. V-ATPase is a key regulator in maintaining proper membrane trafficking, homeostasis, and the earliest developmental decisions in the Xenopus vertebrate development model system. Here, we review how the interference of membrane trafficking with membrane trafficking inhibitors might be clinically relevant in humans.

9.
Proc Natl Acad Sci U S A ; 119(17): e2201008119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35446621

RESUMEN

Lysosomes are the digestive center of the cell and play important roles in human diseases, including cancer. Previous work has suggested that late endosomes, also known as multivesicular bodies (MVBs), and lysosomes are essential for canonical Wnt pathway signaling. Sequestration of Glycogen Synthase 3 (GSK3) and of ß­catenin destruction complex components in MVBs is required for sustained canonical Wnt signaling. Little is known about the role of lysosomes during early development. In the Xenopus egg, a Wnt-like cytoplasmic determinant signal initiates formation of the body axis following a cortical rotation triggered by sperm entry. Here we report that cathepsin D was activated in lysosomes specifically on the dorsal marginal zone of the embryo at the 64-cell stage, long before zygotic transcription starts. Expansion of the MVB compartment with low-dose hydroxychloroquine (HCQ) greatly potentiated the dorsalizing effects of the Wnt agonist lithium chloride (LiCl) in embryos, and this effect required macropinocytosis. Formation of the dorsal axis required lysosomes, as indicated by brief treatments with the vacuolar ATPase (V-ATPase) inhibitors Bafilomycin A1 or Concanamycin A at the 32-cell stage. Inhibiting the MVB-forming machinery with a dominant-negative point mutation in Vacuolar Protein Sorting 4 (Vps4-EQ) interfered with the endogenous dorsal axis. The Wnt-like activity of the dorsal cytoplasmic determinant Huluwa (Hwa), and that of microinjected xWnt8 messenger RNA, also required lysosome acidification and the MVB-forming machinery. We conclude that lysosome function is required for early dorsal axis development in Xenopus. The results highlight the intertwining between membrane trafficking, lysosomes, and vertebrate axis formation.


Asunto(s)
Lisosomas , Transducción de Señal , Animales , Tipificación del Cuerpo , Embrión de Mamíferos , Embrión no Mamífero , Proteínas de Xenopus , Xenopus laevis
10.
Dev Biol ; 487: 10-20, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35443190

RESUMEN

Developmental biology has contributed greatly to evolutionary biology in the past century. With the discovery that vertebrates share Hox genes with Drosophila in 1984, it became apparent that all animals evolved from variations of an ancestral embryonic patterning genetic tool-kit. In the dorsal-ventral (D-V) axis, a fundamental experiment was the Spemann-Mangold organizer transplant performed in 1924. Almost a century later, D-V genes have been subjected to saturating molecular screens in Xenopus and extensive genetic screens in zebrafish. A network of secreted growth factor antagonists has emerged, and we review here in detail the Chordin/Tolloid/BMP pathway. Chordin establishes a morphogen gradient spanning the entire embryo that was present even in the cnidarian Nematostella. This ancient system was present in Urbilateria, the last common ancestor of the protostome and deuterostome bilateral animals. We suggest that Urbilateria had a complex life cycle with an adult benthic form on the sea bottom, and also a primary larval pelagic or planktonic phase to disperse the species in the marine milieu. Larvae with two rows of cilia beating in opposite directions to entrap food particles, an apical sensory organ, and a rudimentary eye, are present in many protostome and deuterostome phyla. Although the larval phase has been lost multiple times in evolution, and larvae can adopt traits present in their adult forms, the simplest explanation is that Urbilateria had a pelago-benthic life cycle. The use of conserved developmental patterning systems likely placed evolutionary constraints in the animal forms that evolved by natural selection.


Asunto(s)
Tipificación del Cuerpo , Pez Cebra , Animales , Tipificación del Cuerpo/genética , Drosophila/genética , Genes Homeobox , Larva/genética , Organizadores Embrionarios , Pez Cebra/genética
11.
iScience ; 25(4): 104123, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402867

RESUMEN

During canonical Wnt signaling, the Wnt receptor complex is sequestered together with glycogen synthase kinase 3 (GSK3) and Axin inside late endosomes, known as multivesicular bodies (MVBs). Here, we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin ß 1 (ITGß1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGß1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGß1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGß1 depletion decreased Wnt signaling. The finding of a crosstalk between two major signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.

12.
Subcell Biochem ; 98: 169-187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378708

RESUMEN

Here we review the regulation of macropinocytosis by Wnt growth factor signaling. Canonical Wnt signaling is normally thought of as a regulator of nuclear ß-catenin, but emerging results indicate that there is much more than ß-catenin to the Wnt pathway. Macropinocytosis is transiently regulated by EGF-RTK-Ras-PI3K signaling. Recent studies show that Wnt signaling provides for sustained acquisition of nutrients by macropinocytosis. Endocytosis of Wnt-Lrp6-Fz receptor complexes triggers the sequestration of GSK3 and components of the cytosolic destruction complex such as Axin1 inside multivesicular bodies (MVBs) through the action of the ESCRT machinery. Wnt macropinocytosis can be induced both by the transcriptional loop of stabilized ß-catenin, and by the inhibition of GSK3 even in the absence of new protein synthesis. The cell is poised for macropinocytosis, and all it requires for triggering of Pak1 and the actin machinery is the inhibition of GSK3. Striking lysosomal acidification, which requires macropinocytosis, is induced by GSK3 chemical inhibitors or Wnt protein. Wnt-induced macropinocytosis requires the ESCRT machinery that forms MVBs. In cancer cells, mutations in the tumor suppressors APC and Axin1 result in extensive macropinocytosis, which can be reversed by restoring wild-type protein. In basal cellular conditions, GSK3 functions to constitutively repress macropinocytosis.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Fosfatidilinositol 3-Quinasas , Complejos de Clasificación Endosomal Requeridos para el Transporte , Glucógeno Sintasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
13.
Annu Rev Cell Dev Biol ; 37: 369-389, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34196570

RESUMEN

Wnt signaling has multiple functions beyond the transcriptional effects of ß-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Vía de Señalización Wnt , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Lisosomas/metabolismo , Fosforilación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología
14.
Sci Rep ; 10(1): 21555, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299006

RESUMEN

The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including ß-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of ß-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/ß-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Enzimas Multifuncionales/metabolismo , Receptor trkA/metabolismo , Vía de Señalización Wnt/fisiología , Fusión Génica , Células HEK293 , Humanos
15.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726636

RESUMEN

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Asunto(s)
Proteína Axina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Pinocitosis/fisiología , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Endocitosis/fisiología , Endosomas/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Lisosomas/metabolismo , Fosforilación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis , beta Catenina/metabolismo
16.
Cancers (Basel) ; 11(6)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151160

RESUMEN

Hypoxia and the accumulation of hypoxia-inducible factors (HIFs) in tumors have been associated with therapeutic resistance and with autophagy establishment. We examined the effects of stable knockdown of HIF-1α or HIF-2α expression on autophagy and drug resistance in colon cancer cells. We found that under normoxic conditions, malignant cells exhibit increased basal levels of autophagy, compared with non-malignant cells, in addition to the previously reported coexpression of HIF-1α and HIF-2α. Knockdown of HIF-1α or HIF-2α expression resulted in increased autophagic and apoptotic cell death, indicating that the survival of cells is HIF-dependent. Cytotoxic-induced cell death was significantly increased by knockdown of HIFs but not by autophagy inhibition. Strikingly, although malignancy-resistant cells were sensitized to death by nutrient stress, the combination with HIF-2α depletion, but not with HIF-1α depletion, induced severe cell death. Oxidative stress levels were significantly increased as a result of HIF-2α specific inhibition or silencing suggesting that this may contribute to sensitize cells to death. The in vitro results were confirmed in vivo using a xenograft mouse model. We found that coordinated autophagy and mTOR inhibition enhanced cell death and induced tumor remission only in HIF-2α-silenced cells. Finally, using a specific HIF-2α inhibitor alone or in combination with drugs in patient-derived primary colon cancer cells, overcame their resistance to 5-FU or CCI-779, thus emphasizing the crucial role played by HIF-2α in promoting resistance and cell survival.

17.
Int J Dev Biol ; 63(6-7): 301-309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250914

RESUMEN

Animal embryos have the remarkable property of self-organization. Over 125 years ago, Hans Driesch separated the two blastomeres of sea urchin embryos and obtained twins, in what was the foundation of experimental embryology. Since then, embryonic twinning has been obtained experimentally in many animals. In a recent study, we developed bisection methods that generate identical twins reliably from Xenopus blastula embryos. In the present study, we have investigated the transcriptome of regenerating half-embryos after sagittal and dorsal-ventral (D-V) bisections. Individual embryos were operated at midblastula (stage 8) with an eyelash hair and cultured until early gastrula (stage 10.5) or late gastrula (stage 12) and the transcriptome of both halves were analyzed by RNA-seq. Since many genes are activated by wound healing in Xenopus embryos, we resorted to stringent sequence analyses and identified genes up-regulated in identical twins but not in either dorsal or ventral fragments. At early gastrula, cell division-related transcripts such as histones were elevated, whereas at late gastrula, pluripotency genes (such as sox2) and germ layer determination genes (such as eomesodermin, ripply2 and activin receptor ACVRI) were identified. Among the down-regulated transcripts, sizzled, a regulator of Chordin stability, was prominent. These findings are consistent with a model in which cell division is required to heal damage, while maintaining pluripotency to allow formation of the organizer with a displacement of 90 0 from its original site. The extensive transcriptomic data presented here provides a valuable resource for data mining of gene expression during early vertebrate development.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regeneración , Transcriptoma , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Embrión no Mamífero/citología , Gástrula/citología , Gástrula/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(21): 10402-10411, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061124

RESUMEN

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Wnt treatment markedly increased the endocytosis and degradation in lysosomes of BSA. In this study, we report that in addition to receptor-mediated endocytosis, Wnt also triggers the intake of large amounts of extracellular fluid by macropinocytosis, a nonreceptor-mediated actin-driven process. Macropinocytosis induction is rapid and independent of protein synthesis. In the presence of Wnt, large amounts of nutrient-rich packages such as proteins and glycoproteins were channeled into lysosomes after fusing with smaller receptor-mediated vesicles containing glycogen synthase kinase 3 (GSK3) and protein arginine ethyltransferase 1 (PRMT1), an enzyme required for canonical Wnt signaling. Addition of Wnt3a, as well as overexpression of Disheveled (Dvl), Frizzled (Fz8), or dominant-negative Axin induced endocytosis. Depletion of the tumor suppressors adenomatous polyposis coli (APC) or Axin dramatically increased macropinocytosis, defined by incorporation of the high molecular weight marker tetramethylrhodamine (TMR)-dextran and its blockage by the Na+/H+ exchanger ethylisopropyl amiloride (EIPA). Macropinocytosis was blocked by dominant-negative vacuolar protein sorting 4 (Vps4), indicating that the Wnt pathway is dependent on multivesicular body formation, a process called microautophagy. SW480 colorectal cancer cells displayed constitutive macropinocytosis and increased extracellular protein degradation in lysosomes, which were suppressed by restoring full-length APC. Accumulation of the transcriptional activator ß-catenin in the nucleus of SW480 cells was inhibited by methyltransferase inhibition, EIPA, or the diuretic amiloride. The results indicate that Wnt signaling switches metabolism toward nutrient acquisition by engulfment of extracellular fluids and suggest possible treatments for Wnt-driven cancer progression.


Asunto(s)
Lisosomas/metabolismo , Pinocitosis/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Proteína Axina/metabolismo , Línea Celular , Línea Celular Tumoral , Endocitosis/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Glicoproteínas/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Transactivadores/metabolismo , beta Catenina/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(23): E5317-E5325, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29773710

RESUMEN

Arginine methylation has emerged as a widespread and reversible protein modification with the potential to regulate a multitude of cellular processes, but its function is poorly understood. Endolysosomes play an important role in Wnt signaling, in which glycogen synthase kinase 3 (GSK3) becomes sequestered inside multivesicular bodies (MVBs) by the process known as microautophagy, causing the stabilization of many proteins. Up to 20% of cellular proteins contain three or more consecutive putative GSK3 sites, and of these 33% also contain methylarginine (meArg) modifications. Intriguingly, a cytoskeletal protein was previously known to have meArg modifications that enhanced subsequent phosphorylations by GSK3. Here, we report the unexpected finding that protein arginine methyltransferase 1 (PRMT1) is required for canonical Wnt signaling. Treatment of cultured cells for 5-30 min with Wnt3a induced a large increase in total endocytic vesicles which were also positive for asymmetric dimethylarginine modifications. Protease protection studies, both biochemical and in situ in cultured cells, showed that many meArg-modified cytosolic proteins became rapidly translocated into MVBs together with GSK3 and Lys48-polyubiquitinated proteins by ESCRT-driven microautophagy. In the case of the transcription factor Smad4, we showed that a unique arginine methylation site was required for GSK3 phosphorylation and Wnt regulation. The enzyme PRMT1 was found to be essential for Wnt-stimulated arginine methylation, GSK3 sequestration, and canonical Wnt signaling. The results reveal a cell biological role for PRMT1 arginine methylation at the crossroads of growth factor signaling, protein phosphorylation, membrane trafficking, cytosolic proteolysis, and Wnt-regulated microautophagy.


Asunto(s)
Arginina/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Vía de Señalización Wnt/fisiología , Línea Celular , Endocitosis/fisiología , Endosomas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/metabolismo , Metilación , Cuerpos Multivesiculares/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/fisiología , Proteínas Represoras/fisiología , Proteína Smad4 , Ubiquitinación , Proteínas Wnt/metabolismo
20.
Appl Opt ; 56(15): 4278-4283, 2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29047851

RESUMEN

This paper presents a novel non-iterative and robust algorithm in phase-shifting interferometry of three unknown and unequal phase steps. First, the modulation light and the object phase are algebraically eliminated; second, the background light is approximated to a 2-D polynomial of degree K and estimated by applying the least squares method; third the phase steps are obtained, and finally, the object phase is computed. This idea is theoretically described and verified numerically and experimentally for several values of K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...