Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
J Chromatogr A ; 1720: 464771, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38447433

During collagen biosynthesis, proline is post-translationally converted to hydroxyproline by specific enzymes. This amino acid, unique to collagen, plays a crucial role in stabilizing the collagen triple helix structure and could serve as an important biomarker for collagen content and quality analysis. Hydroxyproline has four isomers, depending on whether proline is hydroxylated at position 4 or 3 and on whether the cis- or trans- conformation is formed. Moreover, as extensive hydrolysis of collagen is required for its amino acid analysis, epimerization may also occur, although to a lesser extent, giving a total of eight possible isomers. The aim of the present study was to develop a reversed-phase high-performance liquid chromatography-UV-mass spectrometry (RPLC-UV-MS) method for the separation and quantification of all eight hydroxyproline isomers. After the chiral derivatization of the hydroxyproline isomers with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA), to enable their UV detection, the derivatized diastereoisomers were separated by testing different C18 column technologies and morphologies and optimizing operative conditions such as the mobile phase composition (solvent, additives), elution mode, flow rate and temperature. Baseline resolution of all eight isomers was achieved on a HALO® ES-C18 reversed-phase column (150×1.5 mm, 2.7 µm, 160 Å) using isocratic elution and MS-compatible mobile phase. The optimized method was validated for the quantification of hydroxyproline isomers and then applied to different collagen hydrolysates to gain insight and a deeper understanding of hydroxyproline abundances in different species (human, chicken) and sources (native, recombinant).


Collagen , Proline , Humans , Hydroxyproline/analysis , Chromatography, High Pressure Liquid/methods , Collagen/analysis , Collagen/chemistry , Indicators and Reagents
2.
Biol Direct ; 19(1): 11, 2024 01 25.
Article En | MEDLINE | ID: mdl-38268026

BACKGROUND: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS: Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.


Tuberculosis , Vaccines , Humans , Glycosylation , Tuberculosis/prevention & control , Sugars
3.
Talanta ; 269: 125486, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38043340

The current HPLC methods for the quantification of vitamin D3 (VitD3) and its two isomers previtamin D3 (PreVitD3) and trans-vitamin D3 (trans-VitD3) in olive oil preparations present some limitations mainly due to peak overlapping of the oily matrix components with the compounds of interest. The use of two-dimensional liquid chromatography (2D-LC) with different retention mechanism can reach higher resolving power thus allowing the analysis of complex samples. The present paper proposes a new alternative method including a solid phase extraction sample preparation step and a two-dimensional liquid chromatographic analysis using routine instrumentation, fitting the needs of quality assurance and quality control laboratories of pharmaceutical companies. The extraction protocol was demonstrated to provide a clean-up of the sample and a quantitative recovery of the species of interest. The 2D method proved its suitability in the isolation of vitamins from oil components in the first dimension and the separation and quantification of the analytes in the second dimension thanks to the orthogonal selectivities of phenyl and porous graphitic carbon (PGC) stationary phases. The method was validated following ICH guidelines and possesses an adequate sensitivity to quantify the impurity trans-VitD3 in pharmaceuticals considering the limits imposed by regulatory agencies. The applicability of the phenyl x PGC 2D-LC-UV method to quality control of medicinal products based on VitD3 in olive oil was confirmed by the successful quantification of vitamins in olive oil formulations.


Cholecalciferol , Vitamins , Cholecalciferol/analysis , Olive Oil/chemistry , Chromatography, Liquid/methods , Vitamins/analysis , Chromatography, High Pressure Liquid/methods , Vitamin A/analysis , Vitamin K/analysis , Solid Phase Extraction
4.
Pharmaceutics ; 15(5)2023 Apr 23.
Article En | MEDLINE | ID: mdl-37242563

Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines.

5.
Anal Bioanal Chem ; 415(16): 3155-3166, 2023 Jul.
Article En | MEDLINE | ID: mdl-37246979

Recombinant collagen production, especially using yeasts as expression systems, could represent a promising alternative over traditional extractive methods from animal sources, offering controllable, scalable, and high-quality products. Monitoring the efficiency and efficacy of procollagen/collagen expression, especially in the initial fermentation phases, can be difficult and time consuming, as biological matrices necessitate purification and commonly used analytical methods are only partially informative. We propose a straightforward, efficient, and reusable immunocapture system able to specifically isolate human procollagen type II from fermentation broths and to release it in few experimental steps. A recovered sample allows for a detailed characterization providing information on structural identity and integrity, which can strongly support the monitoring of fermentation processes. The immunocapture system relies on the use of protein A-coated magnetic beads which have been functionalized and cross-linked with a human anti-procollagen II antibody (average immobilization yield of 97.7%) to create a stable and reusable support for the specific procollagen fishing. We set up the binding and release conditions ensuring specific and reproducible binding with a synthetic procollagen antigen. The absence of non-specific interaction with the support and binding specificity was demonstrated, and the latter was also confirmed by a peptide mapping epitope study in reversed-phase liquid chromatography high-resolution mass spectrometry (RP-LC-HRMS). The bio-activated support proved to be reusable and stable over 21 days from the initial use. Finally, the system was successfully tested on a raw yeast fermentation sample to provide a proof of concept of the applicability within recombinant collagen production.


Collagen , Saccharomyces cerevisiae , Animals , Humans , Collagen Type II/metabolism , Saccharomyces cerevisiae/metabolism , Fermentation , Collagen/metabolism , Procollagen/chemistry , Procollagen/metabolism , Magnetic Phenomena
6.
Pharmaceutics ; 15(2)2023 Jan 22.
Article En | MEDLINE | ID: mdl-36839705

Sodium alginate (SA)-based hydrogels are often employed as bioink for three-dimensional (3D) scaffold bioprinting. They offer a suitable environment for cell proliferation and differentiation during tissue regeneration and also control the release of growth factors and mesenchymal stem cell secretome, which is useful for scaffold biointegration. However, such hydrogels show poor mechanical properties, fast-release kinetics, and low biological performance, hampering their successful clinical application. In this work, silk fibroin (SF), a protein with excellent biomechanical properties frequently used for controlled drug release, was blended with SA to obtain improved bioink and scaffold properties. Firstly, we produced a printable SA solution containing SF capable of the conformational change from Silk I (random coil) to Silk II (ß-sheet): this transition is a fundamental condition to improve the scaffold's mechanical properties. Then, the SA-SF blends' printability and shape fidelity were demonstrated, and mechanical characterization of the printed hydrogels was performed: SF significantly increased compressive elastic modulus, while no influence on tensile response was detected. Finally, the release profile of Lyosecretome-a freeze-dried formulation of MSC-secretome containing extracellular vesicles (EV)-from scaffolds was determined: SF not only dramatically slowed the EV release rate, but also modified the kinetics and mechanism release with respect to the baseline of SA hydrogel. Overall, these results lay the foundation for the development of SA-SF bioinks with modulable mechanical and EV-release properties, and their application in 3D scaffold printing.

7.
J Pharm Biomed Anal ; 220: 114971, 2022 Oct 25.
Article En | MEDLINE | ID: mdl-35970110

Mepartricin is a semisynthetic polyene macrolide with antifungal and anti-protozoal activities, and it is widely used for the treatment of benign prostatic hyperplasia. Mepartricin is produced by synthetic methyl esterification of the more toxic partricin, and its activity is due to a complex of related compounds. Among them, the main ones are mepartricin B and mepartricin A which are characterized by the presence of a primary and a secondary amine group, respectively. In this work a previously reported HPLC-UV method was properly modified to make it MS-compatible. The selected conditions entail the use of a C18 reverse phase column, and a mobile phase composed by ammonium formate and acetonitrile, with the addition of heptafluorobutyric acid as modifier. The developed method was applied to the characterization of a mepartricin reference standard and a mepartricin experimental batch. All the UV responding peaks, 30 for the standard and 21 for the experimental batch, were successfully detected by MS, allowing to define their m/z values and acquire their fragmentation spectra. For the structural elucidation of isobaric species and, in particular, the identification of toxic partricin-related impurities, the presence of differently ionisable chemical groups was considered, as partricins contain free caboxy-groups, while mepartricins represent their estherified counterparts. A deep study of the effect of mobile phase pH on the chromatographic retention of partricin and mepartricin related compounds was performed in the pH range 2.5-6.5. This study allowed to successfully cluster all the detected species and asses, in the considered batch, the absence of other partricin-related impurities in addition to partricin B and partricin A.


Mepartricin , Acetonitriles , Amines , Antifungal Agents , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drug Contamination , Hydrogen-Ion Concentration , Mass Spectrometry , Polyenes
8.
J Pharm Biomed Anal ; 216: 114796, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35550279

In this work, an analytical platform based on the use of chromatography and mass spectrometry (MS), has been applied to the characterization of Rituximab (RTX) obtained from two plant expression systems (rice and tobacco) in comparison to the mammalian cell-derived reference monoclonal antibody (mAb). Different chromatographic approaches, hyphenated to high resolution MS (HRMS), were applied to RTX structural investigation both at middle- and peptide level. In particular, cation exchange chromatography (CEX), size exclusion chromatography (SEC), reversed phase (RPLC) and hydrophilic interaction liquid chromatographic (HILIC) methods were developed and applied on intact mAbs, IdeS-, and trypsin digests in order to address critical attributes such as primary structure, glycan composition, species-related heterogeneity, glycosylation degree, charge variants, aggregation tendency and enzymatic stability. All the collected data highlight the features and criticalities of each production approach. Production in rice results in a heterogeneous but stable product over time, suggesting the absence of proteases in seeds; while tobacco expression system leads to more homogeneous glycosylation, but protein stability seems to be a critical issue probably due to the presence of proteases. This analytical strategy represents a robust support to scientists in the selection and optimization of the best plant expression system to produce recombinant humanized mAbs.


Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Animals , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Mammals , Peptide Hydrolases , Tandem Mass Spectrometry
9.
Front Mol Biosci ; 8: 765683, 2021.
Article En | MEDLINE | ID: mdl-34859053

The characterization of monoclonal antibodies (mAbs) requires laborious and time-consuming sample preparation steps before the liquid chromatography-mass spectrometry (LC-MS) analysis. Middle-up approaches entailing the use of specific proteases (papain, IdeS, etc.) emerged as practical and informative methods for mAb characterization. This work reports the development of immobilized enzyme reactors (IMERs) based on papain able to support mAb analytical characterization. Two monolithic IMERs were prepared by the covalent immobilization of papain on different supports, both functionalized via epoxy groups: a Chromolith® WP 300 Epoxy silica column from Merck KGaA and a polymerized high internal phase emulsion (polyHIPE) material synthesized by our research group. The two bioreactors were included in an in-flow system and characterized in terms of immobilization yield, kinetics, activity, and stability using Nα-benzoyl-L-arginine ethyl ester (BAEE) as a standard substrate. Moreover, the two bioreactors were tested toward a standard mAb, namely, rituximab (RTX). An on-line platform for mAb sample preparation and analysis with minimal operator manipulation was developed with both IMERs, allowing to reduce enzyme consumption and to improve repeatability compared to in-batch reactions. The site-specificity of papain was maintained after its immobilization on silica and polyHIPE monolithic supports, and the two IMERs were successfully applied to RTX digestion for its structural characterization by LC-MS. The main pros and cons of the two supports for the present application were described.

10.
Cancers (Basel) ; 13(5)2021 Mar 09.
Article En | MEDLINE | ID: mdl-33803385

Arg-Gly-Asp (RGD)-based cyclopentapeptides (cRGDs) have a high affinity towards integrin αvß3 and αvß5, which are overexpressed by many tumor cells. Here, curcumin-loaded silk fibroin nanoparticles (SFNs) have been functionalized on the surface with cRGD to provide active targeting towards tumor cells; a "click reaction" between the RGD-based cyclopentapeptide carrying an azide group and triple-bond-functionalized nanoparticles has been exploited. Both naked and functionalized SFNs were less than 200 nm in diameter and showed a round-shaped morphology but, after functionalization, SFNs increased in size and protein molecular weight. The functionalization of SFNs' surfaces with cRGD provided active internalization by cells overexpressing integrin receptors. At the lowest concentration tested (0.01 mg/mL), functionalized SFNs showed more effective uptake with respect to the naked by tumor cells that overexpress integrin receptors (but not for non-overexpressing ones). In contrast, at higher concentrations, the non-specific cell membrane protein-particle interactions are promoted and coupled to specific and target mediated uptake. Visual observations by fluorescence microscopy suggested that SFNs bind to integrin receptors on the cell surface and are then internalized by endocytosis. Overall, SFN functionalization provided in vitro active targeting for site-specific delivery of anticancer drugs, boosting activity and sparing healthy organs.

11.
Molecules ; 26(4)2021 Feb 09.
Article En | MEDLINE | ID: mdl-33572099

Hovenia dulcis Thunberg is an herbal plant, belonging to the Rhamnaceae family, widespread in west Asia, USA, Australia and New Zealand, but still almost unknown in Western countries. H. dulcis has been described to possess several pharmacological properties, such as antidiabetic, anticancer, antioxidant, anti-inflammatory and hepatoprotective, especially in the hangover treatment, validating its use as an herbal remedy in the Chinese Traditional Medicine. These biological properties are related to a variety of secondary metabolites synthesized by the different plant parts. Root, bark and leaves are rich of dammarane-type triterpene saponins; dihydrokaempferol, quercetin, 3,3',5',5,7-pentahydroflavone and dihydromyricetin are flavonoids isolated from the seeds; fruits contain mainly dihydroflavonols, such as dihydromyricetin (or ampelopsin) and hovenodulinol, and flavonols such as myricetin and gallocatechin; alkaloids were found in root, barks (frangulanin) and seeds (perlolyrin), and organic acids (vanillic and ferulic) in hot water extract from seeds. Finally, peduncles have plenty of polysaccharides which justify the use as a food supplement. The aim of this work is to review the whole scientific production, with special focus on the last decade, in order to update phytochemistry, biological activities, nutritional properties, toxicological aspect and regulatory classification of H. dulcis extracts for its use in the European Union.


Dietary Supplements/standards , Government Regulation , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rhamnaceae/chemistry , Animals , European Union , Humans , Phytochemicals/adverse effects , Plant Extracts/adverse effects , Toxicological Phenomena
12.
Sci Rep ; 11(1): 2629, 2021 01 29.
Article En | MEDLINE | ID: mdl-33514813

Exogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding. EGF was immobilized on these carriers and immobilization yield was evaluated (100% and 12%, respectively). A peptide mapping of unbound protein regions was carried out by LC-MS to take evidence of the residues involved in the immobilization and, consequently, the flexibility and surface accessibility of immobilized EGF. To assess cell proliferative activities, 10, 25, 50, and 100 ng/mL of each immobilized EGF sample were seeded on fibroblast cells and incubated for 24, 48 and 72 h. The immobilized growth factor showed significantly high cell proliferative activity at 50 and 100 ng/mL compared to control and soluble EGF. Although both of the immobilized samples show dose-dependency when seeded with high number of fibroblast cells, CNBr-agarose-EGF showed a significantly high activity at 100 ng/mL and 72 h incubation, compared to glyoxyl-agarose-EGF.


Enzymes, Immobilized/genetics , Epidermal Growth Factor/genetics , Regeneration/genetics , Tissue Engineering , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Fibroblasts/drug effects , Humans , Peptide Mapping , Protein Binding/drug effects , Sepharose/chemistry , Tissue Scaffolds/chemistry , Wound Healing/drug effects
13.
Eur J Med Chem ; 204: 112578, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32717482

Mycobacteria infection resulting in tuberculosis (TB) is one of the top ten leading causes of death worldwide in 2018, and lipoarabinomannan (LAM) has been confirmed to be the most important antigenic polysaccharide on the TB cell surface. In this study, a convenient synthetic method has been developed for synthesizing three branched oligosaccharides derived from LAM, in which a core building block was prepared by enzymatic hydrolysis in flow chemistry with excellent yield. After several steps of glycosylations, the obtained oligosaccharides were conjugated with recombinant human serum albumin (rHSA) and the ex-vivo ELISA tests were performed using serum obtained from several TB-infected patients, in order to evaluate the affinity of the glycoconjugate products for the human LAM-antibodies. The evaluation results are positive, especially compound 21 that exhibited excellent activity which could be considered as a lead compound for the future development of a new glycoconjugated vaccine against TB.


Bacterial Vaccines/chemical synthesis , Bacterial Vaccines/pharmacology , Glycoconjugates/chemical synthesis , Glycoconjugates/pharmacology , Mannans/chemistry , Tuberculosis/prevention & control , Bacterial Vaccines/chemistry , Drug Design , Glycoconjugates/chemistry , Glycosylation , Humans
14.
J Pharm Biomed Anal ; 186: 113291, 2020 Jul 15.
Article En | MEDLINE | ID: mdl-32334133

Silk sericin (SS) is, together with silk fibroin (SF), one of the two proteins forming the silkworm cocoon. SS is ideal ingredient for cosmetic applications in the formulation of specific products for skin care and hair due to its peculiar physical-chemical composition. SS also showed a great potential in different pharmacological and biotechnological applications, as anticancer drug, anticoagulant, cell culture additive, wound healing agent and drug delivery carrier. Reasons for SS use in biomedical applications derive from its physical-chemical composition. As a consequence, a detailed characterization of SS in terms of average molecular weight, molecular weight distribution and hydro/lipophilic character is crucial to properly address and assess its quality, cosmetic or pharmacological use. In this study, the application of different and complementary chromatographic modes allows a detailed investigation of SS protein isolated from wastewater using two diverse extraction methods. Hydrophilic interaction liquid chromatography (HILIC using an AdvanceBio Glycan Map column) and reverse phase (RP using Symmetry300 C18 column) were applied to intact protein characterization to derive data on protein hydrophilicity and on hydrophobic components of the two SS preparations (SS#1 and SS#2). A higher hydrophilic character of SS#1 was observed by HILIC trace, coherently with the preparation method used, while no significant differences in hydrophobicity were detectable in the RPLC separations. Size distribution was also defined by using a SEC-UV-MS method (using TSKgel SuperSW2000 column) properly optimized to maximize both the size selectivity and the method sensitivity. Taken together, the chromatographic data allowed to better characterize the SS samples obtained by different extraction methods, and the structural properties were correlated to their biological activities.


Chromatography, Gel/methods , Chromatography, Reverse-Phase/methods , Sericins/chemistry , Animals , Bombyx , Chromatography, Liquid , Cosmetics/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Sericins/analysis
15.
J Pharm Biomed Anal ; 179: 112920, 2020 Feb 05.
Article En | MEDLINE | ID: mdl-31706629

In the last two decades, plants became an interesting alternative for the production of recombinant proteins for human therapy and several antibodies expressed in plants have reached the clinical development stage. Plants are capable of post-translational modifications (PTMs) necessary for protein activity and pharmacokinetics, such as glycosylation. However, there are important kingdom-specific modifications that have to be considered when expressing recombinant proteins. Therefore, there is a need for efficient analytical methods for deep protein characterization starting from the expression platform design until the product approval to guarantee product authenticity, quality and efficacy. Literature lacks of reviews dealing with plant-derived proteins purification and characterization by chromatographic methods, thus the focus of the present review is on this topic for the most representative biotechnological drugs i.e. monoclonal antibodies (mAbs). In the first part, a comprehensive discussion of the methods applied in dowstream processes (extraction and clarification) and a detailed overview of the chromatographic techniques useful for the purification of plant-made mAbs are reported. Among purification techniques, Protein A affinity chromatography, ion-exchange chromatography, hydrophobic interaction chromatography, hydrophobic charge induction chromatography or mixed mode chromatography are described. In the second part, we will discuss analytical platforms based on chromatographic techniques (reverse phase, size exclusion chromatography, ion-exchange chromatography, hydrophilic interaction liquid chromatography) coupled with different detection systems (UV, Fluorescence, MS) used at protein, peptide and glycan level to characterize plant-made mAbs with their unique features.


Antibodies, Monoclonal/analysis , Chromatography/methods , Plantibodies/analysis , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Plantibodies/chemistry , Plantibodies/isolation & purification , Protein Processing, Post-Translational
16.
J Pharm Biomed Anal ; 168: 38-43, 2019 May 10.
Article En | MEDLINE | ID: mdl-30784888

A liquid chromatographic MS-compatible method was applied to the structural elucidation of Teicoplanin for identification CRS components. The method, previously developed by our group, involves the use of LiChrospher 100 RP-18 column with a mobile phase composed of ammonium formate 25 mM at pH 6.00 and acetonitrile (ACN). All the peaks with a 0.10% UV area, largely above the disregard limit of 0.15% as fixed by EMA, were considered and submitted to MS/MS fragmentation experiments. The study of MS/MS spectrum collected for Teicoplanin complex major component (namely A2-2) allowed to elucidate the fragmentation pathway and enabled the successful identity assignment of all the 42 detected species. Elution order was also rationalized. An in house batch sample of Teicoplanin was analyzed and, while the 86% of the detected species were structurally identical to those in Teicoplanin for identification CRS, five new derivatives were revealed and structurally characterized. In both the Teicoplanin samples, all the considered species were found to have a Teicoplanin-like structure that allows their classification as closely related impurities, with a significant implication in their qualification threshold.


Anti-Bacterial Agents/administration & dosage , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Teicoplanin/analysis , Anti-Bacterial Agents/chemistry , Drug Contamination/prevention & control , Teicoplanin/chemistry
17.
Anal Bioanal Chem ; 411(2): 439-448, 2019 Jan.
Article En | MEDLINE | ID: mdl-30498982

Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.


Antibodies, Bacterial , Antibody Affinity , Antigens, Bacterial , Epitopes/chemistry , Mass Spectrometry/methods , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Biosensing Techniques , Models, Molecular , Protein Conformation , Proteolysis
18.
J Pharm Biomed Anal ; 162: 185-191, 2019 Jan 05.
Article En | MEDLINE | ID: mdl-30265978

Teicoplanin is a glycopeptide antibiotic prepared by fermentation from cultures of Actinoplanes teichomyceticus, used as drug of last resort for the treatment of bacterial infections in humans. This study, which is the first in a series of two parts, describes the development of a LC method for the separation of Teicoplanin drug substance and its related impurities compatible with MS detection. The separation conditions for Teicoplanin were set on a LiChrospher 100 RP-18 column under gradient elution with a mobile phase composed of ammonium formate 25 mM at pH 6.00 and ACN. The new method was shown equivalent in terms of selectivity to the one reported in the European Pharmacopoeia Teicoplanin monograph, and was validated according to ICH Q2 R1 guidelines for the drug substance assay. The new method offers similar performance to the compendial one but has the advantage of being fully compatible with MS and it can be proposed as a useful tool also for controlling the quality of Teicoplanin fermentation batches and the occurrence of potential impurities.


Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Drug Contamination , Mass Spectrometry , Spectrophotometry, Ultraviolet , Teicoplanin/analysis , Chromatography, High Pressure Liquid/standards , Chromatography, Reverse-Phase/standards , Fermentation , Mass Spectrometry/standards , Quality Control , Reproducibility of Results , Spectrophotometry, Ultraviolet/standards
19.
Front Pharmacol ; 10: 1541, 2019.
Article En | MEDLINE | ID: mdl-32038234

Drypetes klainei Pierre ex Pax is used in Cameroon by Baka people in the wound healing process and for the treatment of burns. In a previous paper we demonstrated the ability of both water (WE) and defatted methanol (DME) extracts to accelerate scratch wound closure in fibroblast cultures, thus validating the traditional use of D. klainey stem bark in the treatment of skin lesions. In this work we carried out a bioassay-guided fractionation of the most active DME, which exhibited in vitro efficacy in accelerating wound healing process, in order to isolate and identify the compound/s responsible for the assessed biological activity. HPLC was used for the metabolite profiling of DME and fractions (analytical) and for the isolation of the bioactive compound (semi-preparative). MS analyses and NMR spectroscopy were used for identifying the isolated compound. The abilities of treatments in accelerating wound healing were studied on murine fibroblasts in terms of cell viability and cell migration (scratch wound-healing assay). The results obtained allowed to unambiguously identify the isolated bioactive compound as nigracin, a known phenolic glycoside firstly isolated and characterized from bark and leaves of Populus nigra in 1967. However, this is the first time that nigracin is identified in the Drypetes genus and that a wound healing activity is demonstrated for this molecule. Specifically, we demonstrated that nigracin significantly stimulates fibroblast growth and improves cell motility and wound closure of fibroblast monolayer in a dose-dependent manner, without any toxicity at the concentrations tested, and is still active at very low doses. This makes the molecule particularly attractive as a possible candidate for developing new therapeutic options for wound care.

20.
J Pharm Biomed Anal ; 157: 10-19, 2018 Aug 05.
Article En | MEDLINE | ID: mdl-29754038

One of the most popular enzymes used for the in vitro cleavage of fusion proteins is enterokinase (EK, E.C. 3.4.21.9). EK cleaves with high specificity after the sequence Asp4-Lys (DDDDK), which allows the fusion protein to preserve its native amino acid terminus without any additional unwanted cleavage residue from the recognition sequence. However, the complete removal of EK after protein cleavage is a critical step to ensure protein identity and stability. As enzyme immobilization increases stability and reusability of the biocatalyst while reducing operating costs and sample contamination, in this work we report the covalent immobilization of recombinant EK (rEK) on monolithic chromatographic supports with different binding chemistries for the development of a rEK-chromatographic-bioreactor. An on-line assay for the determination of the activity of the immobilized rEK was set up using a synthetic substrate (Gly-Asp4-Lys-ß-naphthylamide, GD4K-NA). The assay was used to study the improvement of the operational conditions (temperature and flow rate) on hydrolytic activity of the bioreactor. The immobilization yields, as well as the cleavage activity of immobilized rEK on GD4K-NA, were highly satisfactory when the immobilized enzyme reactor was used in recirculation. The ability of the immobilized rEK to cleave fusion proteins was tested by recirculation of thioredoxin (Trx)-TB10.4 and Trx-Ag85B His-tagged proteins yielding the mature antigens TB10.4 and Ag85B, to be used in the preparation of potential novel glycovaccines against tuberculosis. The prepared rEK-based immobilized enzyme reactors proved to efficiently cleave the considered fusion proteins even if the cleavage specificity at the canonical site was not fully achieved. The immobilized rEK showed very good stability and reusability.


Biopharmaceutics/methods , Enteropeptidase/metabolism , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Bioreactors , Enzymes, Immobilized/metabolism , Thioredoxins/chemistry , Thioredoxins/metabolism
...