Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(6): e2205476, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592417

RESUMEN

Pb(Zr,Ti)O3 (PZT) is the most common ferroelectric (FE) material widely used in solid-state technology. Despite intense studies of PZT over decades, its intrinsic band structure, electron energy depending on 3D momentum k, is still unknown. Here, Pb(Zr0.2 Ti0.8 )O3 using soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) is explored. The enhanced photoelectron escape depth in this photon energy range allows sharp intrinsic definition of the out-of-plane momentum k and thereby of the full 3D band structure. Furthermore, the problem of sample charging due to the inherently insulating nature of PZT is solved by using thin-film PZT samples, where a thickness-induced self-doping results in their heavy doping. For the first time, the soft-X-ray ARPES experiments deliver the intrinsic 3D band structure of PZT as well as the FE-polarization dependent electrostatic potential profile across the PZT film deposited on SrTiO3 and Lax SrMn1- x O3 substrates. The negative charges near the surface, required to stabilize the FE state pointing away from the sample (P+), are identified as oxygen vacancies creating localized in-gap states below the Fermi energy. For the opposite polarization state (P-), the positive charges near the surface are identified as cation vacancies resulting from non-ideal stoichiometry of the PZT film as deduced from quantitative XPS measurements.

2.
J Gastrointestin Liver Dis ; 25(3): 375-83, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27689203

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver, ranking as the second most common cause of death from cancer worldwide. Magnetic nanoparticles (MNPs) have been used so far in tumor diagnosis and treatment, demonstrating great potential and promising results. In principle, three different approaches can be used in the treatment of tumors with superparamagnetic iron oxide nanoparticles: magnetically induced hyperthermia, drug targeting and selective suppression of tumor growth. This review focuses on the use of iron oxide nanoparticles for the diagnosis and treatment of liver cancer and offers a walkthrough from the MNPs imaging applicability to further therapeutic options, including their potential flaws. The MNP unique physical and biochemical properties will be mentioned in close relationship to their subsequent effects on the human body, and, also, their toxic potential will be noted. A presentation of what barriers the MNPs should overcome to be more successful will conclude this review.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas de Magnetita , Técnicas de Diagnóstico Molecular , Nanomedicina/métodos , Animales , Medios de Contraste/administración & dosificación , Composición de Medicamentos , Humanos , Valor Predictivo de las Pruebas
3.
Sci Rep ; 6: 35301, 2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27739461

RESUMEN

Atomically clean lead zirco-titanate PbZr0.2Ti0.8O3 (001) layers exhibit a polarization oriented inwards P(-), visible by a band bending of all core levels towards lower binding energies, whereas as introduced layers exhibit P(+) polarization under air or in ultrahigh vacuum. The magnitude of the inwards polarization decreases when the temperature is increased at 700 K. CO adsorption on P(-) polarized surfaces saturates at about one quarter of a monolayer of carbon, and occurs in both molecular (oxidized) and dissociated (reduced) states of carbon, with a large majority of reduced state. The sticking of CO on the surface in ultrahigh vacuum is found to be directly related to the P(-) polarization state of the surface. A simple electrostatic mechanism is proposed to explain these dissociation processes and the sticking of carbon on P(-) polarized areas. Carbon desorbs also when the surface is irradiated with soft X-rays. Carbon desorption when the polarization is lost proceeds most probably in form of CO2. Upon carbon desorption cycles, the ferroelectric surface is depleted in oxygen and at some point reverses its polarization, owing to electrons provided by oxygen vacancies which are able to screen the depolarization field produced by positive fixed charges at the surface.

4.
Sci Rep ; 5: 14974, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26446442

RESUMEN

The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 10(26) m(-3) for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization.

5.
Phys Chem Chem Phys ; 17(33): 21302-14, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25669606

RESUMEN

The surface enhanced Raman scattering (SERS) effect is explained using the interaction of a polarized molecule with its instantaneous image dipole in a metal surface. This model explains why SERS is obtained mostly on noble metals (Au, Ag), since these metals usually have lower inherent contamination as compared with other more reactive metals; thus, molecules may be found closer to the metal surface. It is shown how stronger SERS amplifications may be obtained using nanostructured surfaces, once the excited molecules are localized in concave sites. The dependence on the fourth power of the incoming radiation electric field is obtained by taking into account the dynamics of adsorption-desorption processes of molecules. The SERS effect is maximal when the excitation frequency is red-shifted with respect to the bulk plasmon resonance. Also, the SERS amplification factor may be dictated by the polarizability of the investigated molecule, α, in a much more critical way than just a power law α(2) or even α(4). By comparing the dipole induced charge density with the amplitudes of plasma waves, the domain of validity of the present theory is derived to be in the low separation regime, where the distance between molecules and metal substrates is below a few nanometres. Some data from the literature are analyzed in the framework of this model, namely the distance, frequency and temperature dependence of the SERS signal, all confirming the validity of the model.

6.
Phys Chem Chem Phys ; 17(1): 509-20, 2015 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-25408223

RESUMEN

Photoelectron spectroscopy studies of (001) oriented PbTi0.8Zr0.2O3 (PZT) single crystal layers with submicron resolution revealed areas with different Pb 5d binding energies, attributed to the different charge and polarization states of the film surface. Two novel effects are evidenced by using intense synchrotron radiation beam experiments: (i) the progressive increase of a low binding energy component for the Pb core levels (evidenced for both 5d and 4f, on two different measurement setups), which can be attributed to a partial decomposition of the PZT film at its surface and promoting the growth of metallic Pb during the photoemission process, with the eventuality of the progressive formation of areas with downwards ferroelectric polarization; (ii) for films annealed in oxygen under clean conditions (in an ultrahigh vacuum installation) a huge shift of the Pb 5d core levels (by 8-9 eV) towards higher binding energies is attributed to the formation of areas with depleted mobile charge carriers, whose surface density is insufficient to screen the depolarization field. This shift is attenuated progressively with time, as the sample is irradiated with high flux soft X-rays. The formation of these areas with strong internal electric field promotes these films as good candidates for photocatalysis and solar cells, since in the operation of these devices the ability to perform charge separation and to avoid electron-hole recombination is crucial.

7.
ACS Appl Mater Interfaces ; 6(4): 2929-39, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24446901

RESUMEN

Electrode interface is a key element in controlling the macroscopic electrical properties of the ferroelectric capacitors based on thin films. In the case of epitaxial ferroelectrics, the electrode interface is essential in controlling the leakage current and the polarization switching, two important elements in the read/write processes of nonvolatile memories. However, the relation between the polarization bound charges and the electronic properties of the electrode interfaces is not yet well understood. Here we show that polarization charges are controlling the height of the potential barriers at the electrode interfaces in the case of Pb(Zr,Ti)O3 and BaTiO3 epitaxial films. The results suggest that the height is set to a value allowing rapid compensation of the depolarization field during the polarization switching, being almost independent of the metals used for electrodes. This general behavior open a new perspective in engineering interface properties and designing new devices based on epitaxial ferroelectrics.

8.
ACS Appl Mater Interfaces ; 5(23): 12488-98, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24180242

RESUMEN

Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.


Asunto(s)
Antivirales/farmacología , Ácidos Borónicos/química , Nanopartículas , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
9.
Materials (Basel) ; 7(1): 106-129, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-28788444

RESUMEN

We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...