Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 24(48): 7135-44, 2005 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16044158

RESUMEN

The nucleotide excision repair (NER) system consists of two sub-pathways, global genome repair (GGR) and transcription-coupled repair (TCR), which exhibit distinct functions in the cellular response to genotoxic stress. Defects in TCR result in prolonged UV light-induced stalling of RNA polymerase II and hypersensitivity to apoptosis induced by UV and certain chemotherapeutic drugs. Here, we show that low doses of UV trigger delayed activation of the stress-induced MAPkinase JNK and its proapoptotic targets c-Jun and ATF-3 in TCR-deficient primary human fibroblasts from Xeroderma Pigmentosum (XP) and Cockayne syndrome (CS) patients. This delayed activation of the JNK pathway is not observed in GGR-deficient TCR-proficient XP cells, is independent of functional p53, and is established through repression of the JNK-phosphatase MKP-1 rather than by activation of the JNK kinases MKK4 and 7. Enzymatic reversal of UV-induced cyclobutane pyrimidine dimers (CPDs) by CPD photolyase abrogated JNK activation, MKP-1 repression, and apoptosis in TCR-deficient XPA cells. Ectopic expression of MKP-1 inhibited DNA-damage-induced JNK activity and apoptosis. These results identify both MKP-1 and JNK as sensors and downstream effectors of persistent DNA damage in transcribed genes and suggest a link between the JNK pathway and UV-induced stalling of RNApol II.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transcripción Genética , Línea Celular Transformada , Transformación Celular Viral , Células Cultivadas , Síndrome de Cockayne/genética , Reparación del ADN , Fosfatasa 1 de Especificidad Dual , Fibroblastos/efectos de la radiación , Citometría de Flujo , Humanos , Proteína Fosfatasa 1 , Factor de Transcripción AP-1/metabolismo , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
2.
DNA Repair (Amst) ; 2(11): 1211-25, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14599743

RESUMEN

Recombination can result in genetic instability, and thus constitutes an important factor in the carcinogenic conversion of mammalian cells. Here we describe the occurrence of UV-stimulated recombination called enhanced recombination (EREC), measured with the use of Herpes Simplex Viruses type 1 mutants. In normal diploid human cells, EREC is induced by UV-C, mitomycin C and ENU, but not by X-ray or MMS. The kinetics of induction of EREC is similar to that of other SOS-like responses such as enhanced reactivation (ER) and enhanced mutagenesis (EM). In contrast to the latter responses, EREC is induced to higher levels and persists for longer periods in DNA repair deficient fibroblasts derived from xeroderma pigmentosum (XP), Cockayne syndrome (CS) and Trichothiodystrophy (TTD) patients. This observation indicates that EREC is a distinct SOS-like response. Apparently, the presence of unrepaired DNA lesions in the host genome is a strongly inducing signal for EREC. On the other hand, in cells derived from patients suffering from Bloom, Werner or Rothmund-Thomson syndrome (RTS) the EREC response is absent. These data indicate that determining EREC is a useful assay to investigate diploid human fibroblasts for abnormalities in UV-stimulated recombination.


Asunto(s)
Síndrome de Cockayne/genética , Reparación del ADN , Enfermedades del Cabello/genética , Recombinación Genética , Xerodermia Pigmentosa/genética , Animales , Células Cultivadas , Cricetinae , Cricetulus , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Herpesvirus Humano 1/genética , Humanos , Cinética , Mutación , Piel/citología , Factores de Tiempo , Rayos Ultravioleta
3.
Oncogene ; 22(27): 4235-42, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12833146

RESUMEN

Exposure of human cells to genotoxic agents induces various signaling pathways involved in the execution of stress- and DNA-damage responses. Inappropriate functioning of the DNA-damage response to ionizing radiation (IR) is associated with the human diseases ataxia-telangiectasia (A-T) and Nijmegen Breakage syndrome (NBS). Here, we show that IR efficiently induces Jun/ATF transcription factor activity in normal human diploid fibroblasts, but not in fibroblasts derived from A-T and NBS patients. IR was found to enhance the expression of c-Jun and, in particular, ATF3, but, in contrast to various other stress stimuli, did not induce the expression of c-Fos. Using specific inhibitors, we found that the ATM- and Nibrin1-dependent activation of ATF3 does neither require p53 nor reactive oxygen species, but is dependent on the p38 and JNK MAPkinases. Via these kinases, IR activates ATF-2, one of the transcription factors acting on the atf3 promoter. The activation of ATF-2 by IR resembles ATF-2 activation by certain growth factors, since IR mainly induced the second step of ATF-2 phosphorylation via the stress-inducible MAPkinases, phosphorylation of Thr69. As IR does not enhance ATF-2 phosphorylation in ATM and Nibrin1-deficient cells, both ATF-2 and ATF3 seem to play an important role in the protective response of human cells to IR.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas , Radiación Ionizante , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Transcripción Activador 2 , Factor de Transcripción Activador 3 , Proteínas de la Ataxia Telangiectasia Mutada , Northern Blotting , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Daño del ADN , Proteínas de Unión al ADN , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Cinética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor , Proteínas Quinasas p38 Activadas por Mitógenos
4.
Cancer Res ; 62(5): 1338-42, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11888902

RESUMEN

Xeroderma pigmentosum (XP) patients are deficient in nucleotide excision repair (NER) because of mutations in one of the genes coding for NER enzymes. This results predominantly in high frequency of UV-induced skin tumors at an early age; the most severe phenotype is found in patients of complementation group A (XPA). However, in a subset of these XPA patients no skin tumors appear, even at advanced age. Fibroblasts of this subset of patients are not capable of raising UV-induced enhanced reactivation (ER) of viruses and up-regulation of ornithine decarboxylase (ODC). We hypothesized that prevention of ODC induction would protect NER-deficient patients from cancer. To simulate the situation in XPA patients, we used a hairless Xpa knockout mouse model and down-regulated the ODC activity by difluoromethylornithine (DFMO) administered in the drinking water. The DFMO treatment significantly suppressed UV-induced carcinogenesis. In a crossover study, we additionally found that discontinuation of the DFMO treatment resulted in a rapid appearance of skin tumors, up to levels found in mice not treated with DFMO. Late-stage DFMO treatment significantly reduced the number of carcinomas by a factor of 2-3, and it appeared to select for carcinomas with high ODC activity. These results indicate that DFMO suppresses the outgrowth but not the initiation of UV-induced tumors. The DFMO treatment reduced the tumor load but did not offer the Xpa knockout mice full protection against UV carcinogenesis.


Asunto(s)
Anticarcinógenos/uso terapéutico , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Eflornitina/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias Inducidas por Radiación/prevención & control , Inhibidores de la Ornitina Descarboxilasa , Proteínas de Unión al ARN/fisiología , Neoplasias Cutáneas/prevención & control , Animales , Femenino , Masculino , Ratones , Ratones Pelados , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Inducidas por Radiación/enzimología , Neoplasias Inducidas por Radiación/etiología , Piel/efectos de los fármacos , Piel/enzimología , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/etiología , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A
5.
Mutat Res ; 499(1): 53-61, 2002 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-11804604

RESUMEN

Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.


Asunto(s)
Proteínas Bacterianas , Daño del ADN/fisiología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Péptido Hidrolasas/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Animales , Daño del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metilmetanosulfonato/farmacología , Poliubiquitina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subtilisinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA