Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728000

RESUMEN

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Asunto(s)
Cardiomiopatía Dilatada , Terapia Molecular Dirigida , Miocitos Cardíacos , Inhibidores de Proteínas Quinasas , Serina , Troponina T , Factor de Transcripción Activador 4/metabolismo , Adenosina Trifosfato/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Carbazoles/farmacología , Carbazoles/uso terapéutico , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Glicina/biosíntesis , Glicina/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Células Madre Pluripotentes Inducidas/fisiología , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosfoglicerato-Deshidrogenasa/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Serina/antagonistas & inhibidores , Serina/biosíntesis , Serina/genética , Troponina T/genética , Troponina T/metabolismo
3.
BMC Geriatr ; 22(1): 94, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109822

RESUMEN

BACKGROUND: Given the rapidly aging society, shrinking workforce, and reducing dependency ratio, there is an increasing challenge for family members to provide care for older adults. While a broad understanding of caregiver burden and its consequences have been studied across various contexts, there is a need to better understand this challenge among family caregivers in Asian societies. METHODS: This study is a cross-sectional observational study. A total of 20 dyads of community-based older adults, who required assistance with at least one activities of daily living, and family caregivers in Thailand participated in the study. We used the first three stages out of five stages of human-centered design: empathize, define, and ideate. RESULTS: On average caregivers were 59.2 years old, with 43% still employed. Of the older adult participants, 10 were interviewed, the others had moderate-to-severe cognitive impairment. Based on the analysis, six caregiver personas (i.e. semi-fictional characters) are identified. Caregiver personas of "The 2-Jober" and "My Life Purpose" has the highest caregiver burden score whereas "The Spouse" has the lowest. Based on the specific needs of the caregiver persona "My Life Purpose", the team brainstormed more than 80 potential solutions which were classified into three categories of solutions that satisfied the metrics of desirability, feasibility and viability: distributed medical care system, technology-charged care network, and community gathering for rest and recuperation. CONCLUSIONS: These solutions are culturally sensitive given that they are built around established behavioral patterns. This is an illustration of a method of innovation that can be applied to bring a culturally specific understanding, and to develop products and services to enable further independent aging.


Asunto(s)
Actividades Cotidianas , Cuidadores , Anciano , Carga del Cuidador , Cuidadores/psicología , Estudios Transversales , Familia , Humanos
4.
Nature ; 572(7769): 335-340, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316208

RESUMEN

Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Mutación , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Haploinsuficiencia/genética , Homeostasis , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de la Célula Individual
5.
Cell Stem Cell ; 24(5): 802-811.e5, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30880024

RESUMEN

The diversity of cardiac lineages contributes to the heterogeneity of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). Here, we report the generation of a hiPSC TBX5Clover2 and NKX2-5TagRFP double reporter to delineate cardiac lineages and isolate lineage-specific subpopulations. Molecular analyses reveal that four different subpopulations can be isolated based on the differential expression of TBX5 and NKX2-5, TBX5+NKX2-5+, TBX5+NKX2-5-, TBX5-NKX2-5+, and TBX5-NKX2-5-, mimicking the first heart field, epicardial, second heart field, and endothelial lineages, respectively. Genetic and functional characterization indicates that each subpopulation differentiates into specific cardiac cells. We further identify CORIN as a cell-surface marker for isolating the TBX5+NKX2-5+ subpopulation and demonstrate the use of lineage-specific CMs for precise drug testing. We anticipate that this tool will facilitate the investigation of cardiac lineage specification and isolation of specific cardiac subpopulations for drug screening, tissue engineering, and disease modeling.


Asunto(s)
Biomarcadores/metabolismo , Separación Celular/métodos , Células Madre Pluripotentes Inducidas/fisiología , Miocardio/citología , Miocitos Cardíacos/fisiología , Serina Endopeptidasas/metabolismo , Biomarcadores Farmacológicos , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Genes Reporteros , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Ingeniería de Tejidos
6.
Proc Natl Acad Sci U S A ; 115(37): 9276-9281, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150400

RESUMEN

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica Familiar , División Celular , Células Madre Pluripotentes Inducidas , Proteínas Musculares , Mutación , Acortamiento del Telómero , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
7.
Cell Stem Cell ; 22(3): 428-444.e5, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499155

RESUMEN

Cardiac development requires coordinated and large-scale rearrangements of the epigenome. The roles and precise mechanisms through which specific epigenetic modifying enzymes control cardiac lineage specification, however, remain unclear. Here we show that the H3K4 methyltransferase SETD7 controls cardiac differentiation by reading H3K36 marks independently of its enzymatic activity. Through chromatin immunoprecipitation sequencing (ChIP-seq), we found that SETD7 targets distinct sets of genes to drive their stage-specific expression during cardiomyocyte differentiation. SETD7 associates with different co-factors at these stages, including SWI/SNF chromatin-remodeling factors during mesodermal formation and the transcription factor NKX2.5 in cardiac progenitors to drive their differentiation. Further analyses revealed that SETD7 binds methylated H3K36 in the bodies of its target genes to facilitate RNA polymerase II (Pol II)-dependent transcription. Moreover, abnormal SETD7 expression impairs functional attributes of terminally differentiated cardiomyocytes. Together, these results reveal how SETD7 acts at sequential steps in cardiac lineage commitment, and they provide insights into crosstalk between dynamic epigenetic marks and chromatin-modifying enzymes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , N-Metiltransferasa de Histona-Lisina/genética , Miocardio/citología , Activación Transcripcional/genética , Señalización del Calcio , Diferenciación Celular/genética , Línea Celular , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Mesodermo/citología , Metilación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética
8.
Cell Stem Cell ; 22(4): 501-513.e7, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29456158

RESUMEN

Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b+GR1hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy.


Asunto(s)
Neoplasias de la Mama/inmunología , Vacunas contra el Cáncer/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Melanoma/inmunología , Mesotelioma/inmunología , Animales , Neoplasias de la Mama/terapia , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Melanoma/terapia , Mesotelioma/terapia , Ratones
9.
Circ Res ; 120(10): 1561-1571, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28246128

RESUMEN

RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes/métodos , Biblioteca de Genes , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Secuencia de Bases , Enfermedades Cardiovasculares/terapia , Células Cultivadas , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplante
10.
Stem Cells ; 35(5): 1131-1140, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28233392

RESUMEN

Heart failure (HF), a common sequela of cardiovascular diseases, remains a staggering clinical problem, associated with high rates of morbidity and mortality worldwide. Advances in pharmacological, interventional, and operative management have improved patient care, but these interventions are insufficient to halt the progression of HF, particularly the end-stage irreversible loss of functional cardiomyocytes. Innovative therapies that could prevent HF progression and improve the function of the failing heart are urgently needed. Following successful preclinical studies, two main strategies have emerged as potential solutions: cardiac gene therapy and cardiac regeneration through stem and precursor cell transplantation. Many potential gene- and cell-based therapies have entered into clinical studies, intending to ameliorate cardiac dysfunction in patients with advanced HF. In this review, we focus on the recent advances in cell- and gene-based therapies in the context of cardiovascular disease, emphasizing the most advanced therapies. The principles and mechanisms of action of gene and cell therapies for HF are discussed along with the limitations of current approaches. Finally, we highlight the emerging technologies that hold promise to revolutionize the biological therapies for cardiovascular diseases. Stem Cells 2017;35:1131-1140.


Asunto(s)
Insuficiencia Cardíaca/terapia , Ensayos Clínicos como Asunto , Terapia Genética , Humanos , Medicina Regenerativa , Trasplante de Células Madre , Células Madre/citología
11.
Cell Stem Cell ; 20(4): 490-504.e5, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28017794

RESUMEN

In familial pulmonary arterial hypertension (FPAH), the autosomal dominant disease-causing BMPR2 mutation is only 20% penetrant, suggesting that genetic variation provides modifiers that alleviate the disease. Here, we used comparison of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from three families with unaffected mutation carriers (UMCs), FPAH patients, and gender-matched controls to investigate this variation. Our analysis identified features of UMC iPSC-ECs related to modifiers of BMPR2 signaling or to differentially expressed genes. FPAH-iPSC-ECs showed reduced adhesion, survival, migration, and angiogenesis compared to UMC-iPSC-ECs and control cells. The "rescued" phenotype of UMC cells was related to an increase in specific BMPR2 activators and/or a reduction in inhibitors, and the improved cell adhesion could be attributed to preservation of related signaling. The improved survival was related to increased BIRC3 and was independent of BMPR2. Our findings therefore highlight protective modifiers for FPAH that could help inform development of future treatment strategies.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Endoteliales/citología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/prevención & control , Células Madre Pluripotentes Inducidas/citología , Mutación/genética , Secuencia de Bases , Proteína Morfogenética Ósea 4/farmacología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Edición Génica , Regulación de la Expresión Génica/efectos de los fármacos , Heterocigoto , Humanos , Hipertensión Pulmonar/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fosforilación/efectos de los fármacos , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Methods Mol Biol ; 1521: 55-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27910041

RESUMEN

Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.


Asunto(s)
Endonucleasas/metabolismo , Edición Génica/métodos , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Separación Celular , Células Clonales , Vectores Genéticos/metabolismo , Células HEK293 , Recombinación Homóloga , Humanos , Células Madre Pluripotentes Inducidas/citología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Transfección
13.
Nat Cell Biol ; 18(10): 1031-42, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27642787

RESUMEN

Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-ß) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-ß signalling. TBX20 regulates the expression of TGF-ß signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-ß signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.


Asunto(s)
Cardiomiopatías/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cardiomiopatías/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Mutación/genética , Fenotipo , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
14.
Cell Stem Cell ; 19(3): 311-25, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545504

RESUMEN

Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Tacrolimus/efectos adversos , Tiazolidinedionas/efectos adversos , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Edición Génica , Genoma Humano , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Secuencias Invertidas Repetidas/genética , Miocitos Cardíacos/metabolismo , Rosiglitazona , Resultado del Tratamiento
15.
Circ Res ; 117(1): 80-8, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26089365

RESUMEN

Disease models are essential for understanding cardiovascular disease pathogenesis and developing new therapeutics. The human induced pluripotent stem cell (iPSC) technology has generated significant enthusiasm for its potential application in basic and translational cardiac research. Patient-specific iPSC-derived cardiomyocytes offer an attractive experimental platform to model cardiovascular diseases, study the earliest stages of human development, accelerate predictive drug toxicology tests, and advance potential regenerative therapies. Harnessing the power of iPSC-derived cardiomyocytes could eliminate confounding species-specific and interpersonal variations and ultimately pave the way for the development of personalized medicine for cardiovascular diseases. However, the predictive power of iPSC-derived cardiomyocytes as a valuable model is contingent on comprehensive and rigorous molecular and functional characterization.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Potenciales de Acción , Bioingeniería/métodos , Señalización del Calcio , Enfermedades Cardiovasculares/patología , Cationes/metabolismo , Diferenciación Celular , Linaje de la Célula , Evaluación Preclínica de Medicamentos/métodos , Electrofisiología , Metabolismo Energético , Acoplamiento Excitación-Contracción , Corazón Fetal/citología , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Canales Iónicos/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/clasificación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Fenotipo
16.
Nat Commun ; 6: 6955, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25923014

RESUMEN

A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca(2+) handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Miocitos Cardíacos/metabolismo , Reparación del Gen Blanco , Adenoviridae , Adulto , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Desoxirribonucleasas , Femenino , Técnicas de Transferencia de Gen , Humanos , Células Madre Pluripotentes Inducidas , Fenotipo , Eliminación de Secuencia
17.
Sci Rep ; 5: 8081, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25628230

RESUMEN

The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.


Asunto(s)
Reprogramación Celular , Plásmidos/metabolismo , Células Madre Pluripotentes/citología , Animales , Células Cultivadas , Codón , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunidad Innata , Intrones , Cariotipificación , Factor 4 Similar a Kruppel , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Microscopía Fluorescente , Proteína Homeótica Nanog , Plásmidos/genética , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
18.
Curr Opin Cardiol ; 29(3): 214-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24576884

RESUMEN

PURPOSE OF REVIEW: This article provides an overview of the latest advances in in-vitro modeling of inherited cardiomyopathies using human-induced pluripotent stem cells (iPSCs). RECENT FINDINGS: Inherited cardiomyopathies have been recently modeled by generating iPSCs from patients harboring mutations in genes associated with the pathogenesis of hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy/dysplasia. SUMMARY: Patient-specific iPSCs and their differentiated cardiomyocytes (induced pluripotent stem cell-derived cardiomyocytes) now provide a novel model to study the underlying molecular mechanism of the pathogenesis of familial cardiomyopathies as well as for in-vitro drug screening and drug discovery.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Displasia Ventricular Derecha Arritmogénica/tratamiento farmacológico , Displasia Ventricular Derecha Arritmogénica/etiología , Displasia Ventricular Derecha Arritmogénica/patología , Cardiomiopatía Dilatada/congénito , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/tratamiento farmacológico , Cardiomiopatía Hipertrófica Familiar/etiología , Cardiomiopatía Hipertrófica Familiar/patología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Estudio de Asociación del Genoma Completo , Humanos , Técnicas In Vitro/métodos , Técnicas In Vitro/tendencias , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
19.
Onco Targets Ther ; 6: 447-58, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637543

RESUMEN

BACKGROUND: One particularly promising component of personalized medicine in cancer treatment is targeted therapy, which aims to maximize therapeutic efficacy while minimizing toxicity. However, the number of approved targeted agents remains limited. Expression microarray data for different types of cancer are resources to identify genes that were upregulated. The genes are candidate targets for cancer-targeting agents for future anticancer research and targeted treatments. METHODS AND FINDINGS: The gene expression profiles of 48 types of cancer from 2,141 microarrays reported in the Gene Expression Omnibus were analyzed. These data were organized into 78 experimental groups, on which we performed comprehensive analyses using two-tailed Student's t-tests with significance set at P < 0.01 to identify genes that were upregulated compared with normal cells in each cancer type. The resulting list of significantly upregulated genes was cross-referenced with three categories of protein inhibitor targets, categorized by inhibitor type ('Targets of US Food and Drug Administration (FDA)-approved anticancer drugs', 'Targets of FDA-approved nonantineoplastic drugs', or 'Targets of non-FDA-approved chemical agents'). Of the 78 experimental groups studied, 57 (73%) represent cancers that are currently treated with FDA-approved targeted treatment agents. However, the target genes for the indicated therapies are upregulated in only 33 of these groups (57%). Nevertheless, the mRNA expression of the genes targeted by FDA-approved treatment agents is increased in every experimental group, including all of the cancers without FDA-approved targeted treatments. Moreover, many targets of protein inhibitors that have been approved by the FDA as therapies for nonneoplastic diseases, such as 3-hydroxy-3-methylglutaryl-CoA reductase and cyclooxygenase-2 and the targets of many non-FDA-approved chemical agents, such as cyclin-dependent kinase 1 and DNA-dependent protein kinase, are also overexpressed in many types of cancer. CONCLUSION: This research demonstrates a clinical correlation between bioinformatics data and currently approved treatments and suggests novel uses for known protein inhibitors in future antineoplastic research and targeted therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...