Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Harmful Algae ; 136: 102644, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876525

RESUMEN

Blooms of Prymnesium parvum, a unicellular alga globally distributed in marine and brackish environments, frequently result in massive fish kills due to the production of toxins called prymnesins by this haptophyte. In August 2022, a harmful algal bloom (HAB) of this species occurred in the lower Oder River (Poland and Germany), which caused mass mortalities of fish and other organisms. This HAB was linked to low discharge of the Oder and mining activities that caused a significant increase in salinity. In this context, we report on the molecular detection and screening of this haptophyte and its toxins in environmental samples and clonal cultures derived thereof. Both conventional PCR and droplet digital PCR assays reliably detected P. parvum in environmental samples. eDNA metabarcoding using the V4 region of the 18S rRNA gene revealed a single Prymnesium sequence variant, but failed to identify it to species level. Four clonal cultures established from environmental samples were unambiguously identified as P. parvum by molecular phylogenetics (near full-length 18S rRNA gene) and light microscopy. Phylogenetic analysis (ITS1-5.8S-ITS2 marker region) placed the cultured phylotype within a clade containing other P. parvum strains known to produce B-type prymnesins. Toxin-screening of the cultures using liquid chromatography-electrospray ionization - time of flight mass spectrometry identified B-type prymnesins, which were also detected in extracts of filter residues from water samples of the Oder collected during the HAB. Overall, our investigation provides a detailed characterization of P. parvum, including their prymnesins, during this HAB in the Oder River, contributing valuable insights into this ecological disaster. In addition, the droplet digital PCR assay established here will be useful for future monitoring of low levels of P. parvum on the Oder River or any other salt-impacted and brackish water bodies.


Asunto(s)
Haptophyta , Floraciones de Algas Nocivas , Filogenia , Ríos , Haptophyta/genética , Ríos/química , Toxinas Marinas/análisis , Toxinas Marinas/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/análisis , Alemania
2.
Anal Bioanal Chem ; 416(13): 3205-3222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580889

RESUMEN

Routine analysis of inorganic analytes in whole water samples from rivers (unfiltered river water) is rarely reported in scientific publications. However, this sample type is valuable and often used in long-term monitoring, regulation, and catchment element budgets, as it includes the dissolved, colloidal, and particulate fraction in one sample type. Preservation measures are not needed and solid-liquid partitioning can be disregarded, which simplifies automated sampling and storage procedures. In this study, we provide several digestion protocols for whole water samples from rivers and the subsequent multi-element analysis of 67 major, minor, and trace elements: Li, Be, B, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, U. In the absence of whole water reference materials for inorganic analytes, we introduce simulated whole water samples by suspending sediment reference materials as quality control measures. The applicability for improved routine water quality monitoring was successfully tested on samples from different rivers revealing variations of the element fingerprints over time.

3.
Water Res ; 256: 121596, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685172

RESUMEN

The proton-pump inhibitor pantoprazole (PPZ) is one of the most consumed pharmaceuticals worldwide. Despite its high usage, reported PPZ concentrations in environmental water samples are comparatively low, which can be explained by the extensive metabolism of PPZ in the human body. Since most previous studies did not consider human PPZ metabolites it can be assumed that the current environmental exposure associated with the application of PPZ is substantially underestimated. In our study, 4'-O-demethyl-PPZ sulfide (M1) was identified as the predominant PPZ metabolite by analyzing urine of a PPZ consumer as well as the influent and effluent of a wastewater treatment plant (WWTP) using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). M1 was found to be ubiquitously present in WWTP effluents (max. concentration: 3 000 ng/L) and surface waters in Germany. On average, the surface water concentrations of M1 were approximately 30 times higher than those of the parent compound PPZ. Laboratory scale experiments demonstrated that activated carbon can considerably adsorb M1 und thus improve its removal during wastewater and drinking water treatment. Laboratory ozonation experiments showed a fast oxidation of M1, accompanied by the formation of several ozonation products. Certain ozonation products (identities confirmed via synthesized reference standards) were also detected in water samples collected after ozonation in a full-scale WWTP. Overall lower signal intensities were observed in the effluents of a sand filter and biologically active granular activated carbon filter, suggesting that the compounds were significantly removed during these post-ozonation treatment stages.


Asunto(s)
Monitoreo del Ambiente , Pantoprazol , Aguas Residuales , Contaminantes Químicos del Agua , Medición de Riesgo , Aguas Residuales/química , Humanos , 2-Piridinilmetilsulfinilbencimidazoles , Cromatografía Liquida , Purificación del Agua , Eliminación de Residuos Líquidos
4.
Anal Bioanal Chem ; 416(15): 3519-3532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656365

RESUMEN

The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.


Asunto(s)
Bioensayo , Bioensayo/métodos , Cromatografía en Capa Delgada/métodos , Fenoles/toxicidad , Fenoles/análisis , Fenoles/química , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/química , Estrógenos/análisis , Estrógenos/toxicidad
5.
Mar Pollut Bull ; 195: 115427, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659386

RESUMEN

Micropollutants (MPs) are transported via rivers from industrial and urban areas to the German Bight (G.B.). In contrast to the mounting rivers less information is available on the occurrence of MPs and their transformation products (TPs) in the marine environment of the G.B. In this study 83 compounds, including 26 metabolites of pharmaceuticals and environmental TPs were measured in water at 46 sampling sites in estuaries of Ems, Weser, Elbe, and the G.B. 36 MPs were even detected in the open sea areas (salinity > 34 psu) at 0.07-5.1 ng/L and to the best of our knowledge 10 MPs were detected in the marine environment for the first time. Concentrations of 8 MPs exceeded PNEC values suggesting a potential risk for sea life. Spatial distribution and relation of MPs with salinity allowed identifying emission paths for certain compounds and revealed the emissions from the River Elbe and Rhine.

6.
Water Res ; 245: 120567, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37716300

RESUMEN

Freshwater river systems are commonly defined as the main transport paths of microplastics (MP) from land into the seas. A shift in research interest from oceans to rivers can be observed, as a large number of i) case studies, ii) review papers and iii) experimental studies in this field have been published recently. Still, studies often lack an in-depth consideration of quantification, as units are mostly based on item numbers. Spatiotemporal aspects are often neglected. Transport paths linking MP sources and sinks in the environment are insufficiently understood and only recently the awareness increased that sustainable management of the MP pollution cannot be addressed without a sound knowledge of water- and sediment-driven MP transport. Within this review paper, we therefore i) reviewed 92 MP case-studies, with a special focus on spatiotemporal aspects and ii) gathered and compared global load-estimation data from these studies. We then outlined the key processes determining MP movement in rivers on the basis of existing laboratory experiments and theoretical approaches. A procedure to effectively compare units of MP in the water column and in riverine sediments was developed on the basis of i) an extensive MP-dataset in German waterways and ii) suspended sediment concentrations (SSC) of nearest monitoring stations of the German water and shipping authority. Our analysis indicates that relating MP in water samples to SSC reduces the often stated large difference between MP concentrations in the water column and bed sediments and therefore relativizes the importance of river beds as a major "MP sink". As for a quantification of MP fluxes, the use of MP masses as unit is crucial, we applied an approach to convert MP items to masses with the help of i) a power-law distribution of MP-particle size, triangular distributions of ii) form-ratios and iii) polymer densities. An evaluation with an own, extensive dataset of MP-particles showed reasonable results. Therefore, we translated global load data from item numbers to mass values for further analysis. Values were within a reasonable range, especially when considering the respective catchment size of each river at the sampling site.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Ríos , Plásticos/análisis , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua Dulce , Agua/análisis
7.
Chemosphere ; 338: 139479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37442386

RESUMEN

Suspended particulate matter (SPM) plays a major role in nutrient cycles and for the transport of pollutants within local and transboundary water catchments. Obtaining representative SPM samples from rivers, lakes, inland and coastal waters is crucial for quantitative and qualitative chemical analyses to correctly describe the chemical status of a water body. However, a representative sampling of SPM over time is challenging due to the heterogeneity of SPM particles sizes, their non-uniform distribution in rivers, and a variety of sampling devices being in use. Therefore, we investigated the efficiencies of five different sampling devices commonly used in national and international monitoring programs to collect representative SPM samples. We tested three passive sedimentation-based samplers (SBSs: sedimentation box, SB; sedimentation tank, ST; Raetz Sampler, RS), and two active separation techniques (continuous flow centrifuge, CFC; vacuum filtration, VF) in an experimental laboratory setup using in-house SPM standard suspensions (mineral, organic, and microplastic particles) with defined particle sizes. The mass-based efficiencies of the three examined SBSs were 0-66% for the mineral and organic particles <75 µm, where the mean particle sizes of collected samples were always shifted to bigger sizes compared to the initial suspensions. The efficiencies of the three SBSs to collect microplastic particles <80 µm were <20% due to the lower densities of microplastic compared to organic and mineral particles. In contrast to the SBSs, VF and CFC units showed excellent efficiencies >86% for all tested materials, with similar particle size distributions of the sampled material compared to those of the inlet suspensions. In conclusion, SPM sampling efficiencies of sampling units have to be carefully considered and compared to the respective aims of the monitoring approaches, especially when statements are derived from quantitative results on SPM.


Asunto(s)
Material Particulado , Contaminantes Químicos del Agua , Material Particulado/análisis , Microplásticos , Plásticos , Suspensiones , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ríos , Agua/análisis
8.
PeerJ ; 11: e15192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065699

RESUMEN

The broad use of plastics and the persistence of the material results in plastic residues being found practically everywhere in the environment. If plastics remain in the (aquatic) environment, natural weathering leads to degradation processes and compounds may leach from plastic into the environment. To investigate the impact of degradation process on toxicity of leachates, different types of UV irradiation (UV-C, UV-A/B) were used to simulate weathering processes of different plastic material containing virgin as well as recyclate material and biodegradable polymers. The leached substances were investigated toxicologically using in-vitro bioassays. Cytotoxicity was determined by the MTT-assay, genotoxicity by using the p53-CALUX and Umu-assay, and estrogenic effects by the ERα-CALUX. Genotoxic as well as estrogenic effects were detected in different samples depending on the material and the irradiation type. In four leachates of 12 plastic species estrogenic effects were detected above the recommended safety level of 0.4 ng 17ß-estradiol equivalents/L for surface water samples. In the p53-CALUX and in the Umu-assay leachates from three and two, respectively, of 12 plastic species were found to be genotoxic. The results of the chemical analysis show that plastic material releases a variety of known and unknown substances especially under UV radiation, leading to a complex mixture with potentially harmful effects. In order to investigate these aspects further and to be able to give recommendations for the use of additives in plastics, further effect-related investigations are advisable.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Rayos Ultravioleta , Proteína p53 Supresora de Tumor , Contaminantes Químicos del Agua/toxicidad , Bioensayo , Estrógenos
9.
Environ Sci Technol ; 57(12): 4806-4812, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917996

RESUMEN

A reliable analytical method has been developed to quantify poly(vinyl chloride) (PVC) in environmental samples. Quantification was conducted via combustion ion chromatography (C-IC). Hydrogen chloride (HCl) was quantitatively released from PVC during thermal decomposition and trapped in an absorption solution. Selectivity of the marker HCl in complex environmental samples was ensured using cleanup via pressurized liquid extraction (PLE) with methanol at 100 °C (discarded) and tetrahydrofuran at 185 °C (collected). Using this method, recoveries of 85.5 ± 11.5% and a limit of quantification down to 8.3 µg/g were achieved. A variety of hard and soft PVC products could be successfully analyzed via C-IC with recoveries exceeding >95%. Furthermore, no measurable overdetermination was found for various organic and inorganic matrix ingredients, such as sodium chloride, sucralose, hydroxychloroquine, diclofenac, chloramphenicol, triclosan, or polychlorinated biphenyls. In addition, sediments and suspended particular matter showed PVC concentrations ranging up to 16.0 and 220 µg/g, respectively. However, the gap between determined polymer mass and particle masses could be significant since soft PVC products contain plasticizers up to 50 wt %. Hence, the results of the described method represent a sum of all chlorine-containing polymers, which are extractable under the chosen conditions.


Asunto(s)
Plásticos , Cloruro de Vinilo , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Plastificantes/química , Polímeros , Cloruro de Polivinilo/química
10.
Chemosphere ; 320: 138053, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746248

RESUMEN

Triple-quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ-MS) is a unique analytical technique which is, next to speciation analyses, applied for the determination of total element concentrations in several matrices. Due to its wide linear range, short analysis times, and the collision-reaction gas technology, it is capable of addressing a high number of analytes in a single run with sufficient low limits of quantification for river water monitoring. Over the last decades, the focus of the environmental monitoring changed from "traditional" and regulated analytes to elements of possibly rising concern from new applications such as the so-called technology-critical elements (TCE). By widening the analytical window of this method for applications in networks of future river water monitoring, a better understanding of natural transport processes and global biogeochemical element cycles will be established and the total number of methods can be reduced. During method development and validation, certified reference materials, calibration check solutions, and spiked river water samples from 12 major German rivers covering different catchment areas were measured and evaluated with the three cell gases He, H2 and O2. The method delivers a best as possible undisturbed simultaneous determination for 68 out of 71 target analytes with recoveries in an accepted range of 80-120% for river water samples (dissolved fraction; <0.45 µm). After comprehensive evaluation, we offer a novel best-practice multi-element method for river water monitoring with the goal of fostering the exchange and discussion between practitioners in long-term river monitoring. It enables the readers to create their own methods based on the scientific needs to monitor elemental "fingerprints" of rivers and their catchments.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Ríos/química , Agua Dulce , Gases/análisis , Monitoreo del Ambiente/métodos , Agua/análisis , Contaminantes Químicos del Agua/análisis
11.
Water Res ; 230: 119535, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610183

RESUMEN

The removal of organic micropollutants in municipal wastewater treatment is an extensively studied field of research, but the underlying enzymatic processes have only been elucidated to a small extent so far. In order to shed more light on the enzymatic degradation of the artificial sweetener acesulfame (ACE) in this context, we enriched two bacterial taxa which were not yet described to be involved in the degradation of ACE, an unknown Chelatococcus species and Ensifer adhaerens, by incubating activated sludge in chemically defined media containing ACE as sole carbon source. Cell-free lysates were extracted, spiked with ACE and analyzed via target LC-MS/MS, demonstrating for the first time enzymatically catalyzed ACE degradation outside of living cells. Fractionation of the lysate via two-dimensional fast protein liquid chromatography (FPLC) succeeded in a partial separation of the enzymes catalyzing the initial transformation reaction of ACE from those catalyzing the further transformation pathway. Thereby, an accumulation of the intermediate transformation product acetoacetamide-n-sulfonic acid (ANSA) in the ACE-degrading fractions was achieved, providing first quantitative evidence that the cleavage of the sulfuric ester moiety of ACE is the initial transformation step. The metaproteome of the enrichments was analyzed in the FPLC fractions and in the unfractionated lysate, using shotgun proteomics via UHPLC-HRMS/MS and label-free quantification. The comparison of protein abundances in the FPLC fractions to the corresponding ACE degradation rates revealed a metallo-ß-lactamase fold metallo-hydrolase as most probable candidate for the enzyme catalyzing the initial transformation from ACE to ANSA. This enzyme was by far the most abundant of all detected proteins and amounted to a relative protein abundance of 91% in the most active fraction after the second fractionation step. Moreover, the analysis of the unfractionated lysate resulted in a list of further proteins possibly involved in the transformation of ACE, most striking a highly abundant amidase likely catalyzing the further transformation of ANSA, and an ABC transporter substrate-binding protein that may be involved in the uptake of ACE into the cell.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Cromatografía Liquida , Proteómica , Contaminantes Químicos del Agua/química , Edulcorantes , Catálisis
12.
Water Res ; 229: 119304, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459896

RESUMEN

Non-target screening of suspended particulate matter (SPM), collected from the German rivers Rhine and Saar, was conducted with the goal of identifying organic, permanent cationic contaminants and of estimating their temporal trends over an extended period. Therefore, annual composite samples of SPM, provided by the German Environmental Specimen Bank, were extracted and analyzed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances belonging to the class "permanent cations", prioritization methods were applied utilizing the physicochemical properties of these compounds. These methods include both interactions of the analyte molecules with cation exchange resins and analyzing mass deviations when changing from non-deuterated to deuterated mobile phase solvents during LC-MS analysis. By applying both methods in a combined approach, 123 of the initially detected 2695 features were prioritized, corresponding to a 95% data reduction. This led to the identification of 22 permanent cationic species. The organic dyes Basic Yellow 28 and Fluorescent Brightener 363 as well as two quaternary ammonium compounds (QACs) were detected in environmental samples for the first time to best of or knowledge. The other compounds include additional QACs, as well as quaternary tri-phenylphosphonium compounds (QPC/TPP). In addition to identification, we determined temporal trends of all compounds over a period of 13 years and assessed their ecotoxicological relevance based on estimated concentrations. The two QACs oleyltrimethylammonium and eicosyltrimethylammonium show significant increasing trends in the Rhine SPM and maximum concentrations in the Saar SPM of about 900 and 1400 µg/kg, respectively. In the case of the dyes, constant trends have been observed at the end of the studied period, but also maximum concentrations of 400 µg/kg for Basic Yellow 28 in 2006 and 1000 µg/kg for Fluorescent Brightener 363 in 2015, potentially indicating a strong ecotoxicological risk.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Material Particulado/análisis , Contaminantes Químicos del Agua/química , Ríos/química , Monitoreo del Ambiente
13.
ACS Nano ; 16(10): 16091-16108, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36174231

RESUMEN

Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO2 nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO2 NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C12-AHL a QS signaling compound used by Pseudomonas aeruginosa, was detected in the presence of CeO2 NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in P. aeruginosa cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO), a multifunctional non-AHL QS signal from P. aeruginosa with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria in vivo. The repression of the Pseudomonas quinolone signal (PQS) production and biofilm formation in P. aeruginosa through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO2 enzyme mimics validates the non-toxic strategy for the development of anti-infectives.


Asunto(s)
Acil-Butirolactonas , Nanopartículas , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacología , Peróxido de Hidrógeno/farmacología , Bromuros , Biopelículas , Percepción de Quorum , Pseudomonas aeruginosa , Bacterias/metabolismo , Antibacterianos/farmacología
14.
Water Res ; 222: 118902, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944407

RESUMEN

Detection and identification of macroplastic debris in aquatic environments is crucial to understand and counter the growing emergence and current developments in distribution and deposition of macroplastics. In this context, close-range remote sensing approaches revealing spatial and spectral properties of macroplastics are very beneficial. To date, field surveys and visual census approaches are broadly acknowledged methods to acquire information, but since 2018 techniques based on remote sensing and artificial intelligence are advancing. Despite their proven efficiency, speed and wide applicability, there are still obstacles to overcome, especially when looking at the availability and accessibility of data. Thus, our review summarizes state-of-the-art research about the visual recognition and identification of different sorts of macroplastics. The focus is on both data acquisition techniques and evaluation methods, including Machine Learning and Deep Learning, but resulting products and published data will also be taken into account. Our aim is to provide a critical overview and outlook in a time where this research direction is thriving fast. This study shows that most Machine Learning and Deep Learning approaches are still in an infancy state regarding accuracy and detail when compared to visual monitoring, even though their results look very promising.


Asunto(s)
Inteligencia Artificial , Tecnología de Sensores Remotos , Agua
15.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792263

RESUMEN

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Ecosistema , Ozono/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
16.
Water Res ; 213: 118168, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183017

RESUMEN

A comprehensive real-time evaluation of the chemical status of surface water bodies is still utopian, but in our opinion, it is time to use the momentum delivered by recent advanced technical, infrastructural, and societal developments to get significantly closer. Procedures like inline and online analysis (in situ or in a bypass) with close to real-time analysis and data provision are already available in several industrial sectors. In contrast, atline and offline analysis involving manual sampling and time-decoupled analysis in the laboratory is still common practice in aqueous environmental monitoring. Automated tools for data analysis, verification, and evaluation are changing significantly, becoming more powerful with increasing degrees of automation and the introduction of self-learning systems. In addition, the amount of available data will most likely in near future be increased by societal awareness for water quality and by citizen science. In this analysis, we highlight the significant potential of surface water monitoring techniques, showcase "lighthouse" projects from different sectors, and pin-point gaps we must overcome to strike a path to the future of chemical monitoring of inland surface waters.

17.
Rapid Commun Mass Spectrom ; 36(2): e9206, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614536

RESUMEN

RATIONALE: Non-target screening techniques using high-resolution mass spectrometers become more and more important for environmental sciences. Highly reliable and sophisticated software solutions are required to deal with the large amount of data obtained from such analyses. METHODS: Processing of high-resolution LC-HRMS data was performed upon conversion into an open, XML-based data format followed by an automated assignment of chromatographic peaks using the open-source programming language R. Raw data from three different LC-HRMS systems were processed as a proof of principle. RESULTS: We present a simple and straightforward algorithm to extract chromatographic peaks from previously m/z-centroided data based on the open-source programming language R and C++. The working principle and processing parameters are explained in detail. A ready-to-use script is provided in the supporting information. CONCLUSIONS: The developed algorithm enables a comprehensible automated peak picking of non-target LC-MS data. Application to three completely different HRMS raw data files showed reasonable False Positives and False Negatives detection and moderate calculation times.

19.
Water Res ; 203: 117488, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34482236

RESUMEN

The biodegradability of the anticonvulsant pregabalin (PGB) was studied in laboratory incubation experiments in contact with water/sediment systems under different redox conditions. PGB was degraded by biological processes under aerobic conditions reaching half-lives of 8 to 10 d, while inactivated and anaerobic control experiments revealed no significant decrease of PGB concentrations. Within experiments spiked with elevated PGB concentrations, 12 TPs were formed and tentative chemical structures could be proposed by accurate masses and fragmentation pathways detected via measurements with high resolution mass spectrometry (LC-QToF-MS). Four of the proposed TPs were finally confirmed either by authentic reference standards (PGB-Lactam, ISA, TP 157-A (II)) or a self-synthesized standard (NA-PGB). PGB-Lactam was identified as the quantitatively most relevant TP formed via intramolecular cyclization under aerobic conditions, reaching up to 33% of the initial PGB concentration. Incubation experiments spiked with PGB-Lactam revealed three times higher half-lives compared to the parent compound, indicating that PGB-Lactam is more stable than PGB. A comparison with results gained from water/sediment incubation experiments with the structurally related compound gabapentin (GBP) revealed, that the transformation behaviour can be mainly extrapolated to PGB. Most of the observed transformation reactions found for PGB were comparable to the ones found for GBP. The TPs PGB-Lactam and NA-PGB as well as three GBP TPs (GBP-Lactam, NA-GBP and CCHA) have been detected in German wastewater treatment plants (WWTPs) effluents and the river Rhine including some of its tributaries such as Main, Neckar, Moselle and Aare. Moreover, GBP and PGB as well as some of their TPs were detected in German bank filtrates and finished drinking waters up to 260 ng L-1. For that reason these compounds should be monitored in drinking water in the future.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Biotransformación , Gabapentina , Pregabalina , Ríos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
20.
Water Res ; 202: 117441, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343873

RESUMEN

The suspended sludge and carrier-attached biofilms of three different hybrid moving bed biofilm reactor (MBBR) systems were investigated with respect to their transformation potential for a broad range of micropollutants (MPs) as well as their microbial community composition. For this purpose, laboratory-scale batch experiments were conducted with the separated suspended sludge and the carrier-attached biofilm of every system in triplicate. For all batches the removal of 31 MPs as well as the composition of the microbial community were analyzed. The carrier-attached biofilms from two hybrid MBBR systems showed a significant higher overall transformation potential in comparison to the respective suspended sludge. Especially for the MPs trimethoprim, diclofenac, mecoprop, climbazole and the human metabolite 10,11-dihydro-10-hydroxycarbamazepine consistently higher pseudo-first-order transformation rates could be observed in all three systems. The analysis of the taxonomic composition revealed taxa showing higher relative abundances in the carrier-attached biofilms (e. g. Nitrospirae and Chloroflexi) and in the suspended biomasses (e. g. Bacteroidetes and Betaproteobacteria). Correlations of the biodiversity indices and the MP biotransformation rates resulted in significant positive associations for 11 compounds in suspended sludge, but mostly negative associations for the carrier-attached biofilms. The distinct differences in MP removal between suspended sludge and carrier-attached biofilm of the three different MBBR systems were also reflected by a statistically significant link between the occurrence of specific bacterial taxa (Acidibacter, Nitrospira and Rhizomicrobium) and MP transformation rates of certain MPs. Even though the identified correlations might not necessarily be of causal nature, some of the identified taxa might serve as suitable indicators for the transformation potential of suspended sludge or carrier-attached biofilms.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Biopelículas , Biomasa , Reactores Biológicos , Humanos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...