Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 15: 1377911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812524

RESUMEN

Hypothesis: While conventional in silico immunogenicity risk assessments focus on measuring immunogenicity based on the potential of therapeutic proteins to be processed and presented by a global population-wide set of human leukocyte antigen (HLA) alleles to T cells, future refinements might adjust for HLA allele frequencies in different geographic regions or populations, as well for as individuals in those populations. Adjustment by HLA allele distribution may reveal risk patterns that are specific to population groups or individuals, which current methods that rely on global-population HLA prevalence may obscure. Key findings: This analysis uses HLA frequency-weighted binding predictions to define immunogenicity risk for global and sub-global populations. A comparison of assessments tuned for North American/European versus Japanese/Asian populations suggests that the potential for anti-therapeutic responses (anti-therapeutic antibodies or ATA) for several commonly prescribed Rheumatoid Arthritis (RA) therapeutic biologics may differ, significantly, between the Caucasian and Japanese populations. This appears to align with reports of differing product-related immunogenicity that is observed in different populations. Relevance to clinical practice: Further definition of population-level (regional) and individual patient-specific immunogenic risk profiles may enable prescription of the RA therapeutic with the highest probability of success to each patient, depending on their population of origin and/or their individual HLA background. Furthermore, HLA-specific immunogenicity outcomes data are limited, thus there is a need to expand HLA-association studies that examine the relationship between HLA haplotype and ATA in the clinic.


Asunto(s)
Artritis Reumatoide , Productos Biológicos , Frecuencia de los Genes , Antígenos HLA-DR , Humanos , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/genética , Antirreumáticos/uso terapéutico , Antirreumáticos/efectos adversos , Alelos
3.
Front Immunol ; 14: 1247876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705976

RESUMEN

Zika virus (ZIKV) is a flavivirus primarily transmitted by Aedes species mosquitoes, first discovered in Africa in 1947, that disseminated through Southeast Asia and the Pacific Islands in the 2000s. The first ZIKV infections in the Americas were identified in 2014, and infections exploded through populations in Brazil and other countries in 2015/16. ZIKV infection during pregnancy can cause severe brain and eye defects in offspring, and infection in adults has been associated with higher risks of Guillain-Barré syndrome. We initiated a study to describe the natural history of Zika (the disease) and the immune response to infection, for which some results have been reported. In this paper, we identify ZIKV-specific CD4+ and CD8+ T cell epitopes that induce responses during infection. Two screening approaches were utilized: an untargeted approach with overlapping peptide arrays spanning the entire viral genome, and a targeted approach utilizing peptides predicted to bind human MHC molecules. Immunoinformatic tools were used to identify conserved MHC class I supertype binders and promiscuous class II binding peptide clusters predicted to bind 9 common class II alleles. T cell responses were evaluated in overnight IFN-γ ELISPOT assays. We found that MHC supertype binding predictions outperformed the bulk overlapping peptide approach. Diverse CD4+ T cell responses were observed in most ZIKV-infected participants, while responses to CD8+ T cell epitopes were more limited. Most individuals developed a robust T cell response against epitopes restricted to a single MHC class I supertype and only a single or few CD8+ T cell epitopes overall, suggesting a strong immunodominance phenomenon. Noteworthy is that many epitopes were commonly immunodominant across persons expressing the same class I supertype. Nearly all of the identified epitopes are unique to ZIKV and are not present in Dengue viruses. Collectively, we identified 31 immunogenic peptides restricted by the 6 major class I supertypes and 27 promiscuous class II epitopes. These sequences are highly relevant for design of T cell-targeted ZIKV vaccines and monitoring T cell responses to Zika virus infection and vaccination.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Adulto , Animales , Femenino , Embarazo , Humanos , Epítopos de Linfocito T , Genes MHC Clase I
4.
AAPS J ; 25(5): 87, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697150

RESUMEN

The identification and removal of host cell proteins (HCPs) from biologic products is a critical step in drug development. Despite recent improvements to purification processes, biologics such as monoclonal antibodies, enzyme replacement therapies, and vaccines that are manufactured in a range of cell lines and purified using diverse processes may contain HCP impurities, making it necessary for developers to identify and quantify impurities during process development for each drug product. HCPs that contain sequences that are less conserved with human homologs may be more immunogenic than those that are more conserved. We have developed a computational tool, ISPRI-HCP, that estimates the immunogenic potential of HCP sequences by evaluating and quantifying T cell epitope density and relative conservation with similar T cell epitopes in the human proteome. Here we describe several case studies that support the use of this method for classifying candidate HCP impurities according to their immunogenicity risk.


Asunto(s)
Anticuerpos Monoclonales , Productos Biológicos , Humanos , Línea Celular , Desarrollo de Medicamentos , Epítopos de Linfocito T , Medición de Riesgo
5.
Artículo en Inglés | MEDLINE | ID: mdl-36945694

RESUMEN

The in silico prediction of T cell epitopes within any peptide or biologic drug candidate serves as an important first step for assessing immunogenicity. T cell epitopes bind human leukocyte antigen (HLA) by a well-characterized interaction of amino acid side chains and pockets in the HLA molecule binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm, have been developed to screen natural amino acid sequences for peptides that will bind HLA. In addition to commonly occurring in synthetic peptide impurities, unnatural amino acids (UAA) are also often incorporated into novel peptide therapeutics to improve properties of the drug product. To date, the HLA binding properties of peptides containing UAA are not accurately estimated by most algorithms. Both scenarios warrant the need for enhanced predictive tools. The authors developed an in silico method for modeling the impact of a given UAA on a peptide's likelihood of binding to HLA and, by extension, its immunogenic potential. In silico assessment of immunogenic potential allows for risk-based selection of best candidate peptides in further confirmatory in vitro, ex vivo and in vivo assays, thereby reducing the overall cost of immunogenicity evaluation. Examples demonstrating in silico immunogenicity prediction for product impurities that are commonly found in formulations of the generic peptides teriparatide and semaglutide are provided. Next, this article discusses how HLA binding studies can be used to estimate the binding potentials of commonly encountered UAA and "correct" in silico estimates of binding based on their naturally occurring counterparts. As demonstrated here, these in vitro binding studies are usually performed with known ligands which have been modified to contain UAA in HLA anchor positions. An example using D-amino acids in relative binding position 1 (P1) of the PADRE peptide is presented. As more HLA binding data become available, new predictive models allowing for the direct estimation of HLA binding for peptides containing UAA can be established.

6.
Clin Immunol ; 233: 108888, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34798238

RESUMEN

Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.


Asunto(s)
Hepatitis B Crónica/inmunología , Hepatitis C Crónica/inmunología , Interferón-alfa/inmunología , Proteínas Recombinantes/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Antivirales/inmunología , Antivirales/farmacología , Células CHO , COVID-19/inmunología , COVID-19/virología , Bovinos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Cricetulus , Estabilidad de Medicamentos , Células HEK293 , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Humanos , Interferón-alfa/genética , Interferón-alfa/farmacología , Proteínas Recombinantes/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Tratamiento Farmacológico de COVID-19
7.
Front Immunol ; 12: 636731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220802

RESUMEN

Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.


Asunto(s)
Biología Computacional/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , alfa-Glucosidasas/metabolismo , Terapia de Reemplazo Enzimático , Mapeo Epitopo , Femenino , Antígenos HLA-DR/genética , Humanos , Tolerancia Inmunológica , Lactante , Masculino , Medicina de Precisión , Pronóstico , Análisis de Regresión , Riesgo , alfa-Glucosidasas/genética , alfa-Glucosidasas/inmunología
8.
Front Immunol ; 12: 690348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305923

RESUMEN

The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses - by percentage of responders and response magnitude - associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.


Asunto(s)
Antígenos de Protozoos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/parasitología , Proteínas Portadoras/inmunología , Proteínas Portadoras/farmacología , Antígenos HLA-DR/inmunología , Interacciones Huésped-Parásitos , Humanos , Interferón gamma/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/farmacología
9.
Front Immunol ; 12: 689920, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168657

RESUMEN

An effective malaria vaccine must prevent disease in a range of populations living in regions with vastly different transmission rates and protect against genetically-diverse Plasmodium falciparum (Pf) strains. The protective efficacy afforded by the currently licensed malaria vaccine, Mosquirix™, promotes strong humoral responses to Pf circumsporozoite protein (CSP) 3D7 but protection is limited in duration and by strain variation. Helper CD4 T cells are central to development of protective immune responses, playing roles in B cell activation and maturation processes, cytokine production, and stimulation of effector T cells. Therefore, we took advantage of recent in silico modeling advances to predict and analyze human leukocyte antigen (HLA)-restricted class II epitopes from PfCSP - across the entire PfCSP 3D7 sequence as well as in 539 PfCSP sequence variants - with the goal of improving PfCSP-based malaria vaccines. Specifically, we developed a systematic workflow to identify peptide sequences capable of binding HLA-DR in a context relevant to achieving broad human population coverage utilizing cognate T cell help and with limited T regulatory cell activation triggers. Through this workflow, we identified seven predicted class II epitope clusters in the N- and C-terminal regions of PfCSP 3D7 and an additional eight clusters through comparative analysis of 539 PfCSP sequence variants. A subset of these predicted class II epitope clusters was synthesized as peptides and assessed for HLA-DR binding in vitro. Further, we characterized the functional capacity of these peptides to prime and activate human peripheral blood mononuclear cells (PBMCs), by monitoring cytokine response profiles using MIMIC® technology (Modular IMmune In vitro Construct). Utilizing this decision framework, we found sufficient differential cellular activation and cytokine profiles among HLA-DR-matched PBMC donors to downselect class II epitope clusters for inclusion in a vaccine targeting PfCSP. Importantly, the downselected clusters are not highly conserved across PfCSP variants but rather, they overlap a hypervariable region (TH2R) in the C-terminus of the protein. We recommend assessing these class II epitope clusters within the context of a PfCSP vaccine, employing a test system capable of measuring immunogenicity across a broad set of HLA-DR alleles.


Asunto(s)
Antígenos de Protozoos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Diseño de Fármacos , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/farmacología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Diseño Asistido por Computadora , Citocinas/metabolismo , Antígenos HLA-DR/inmunología , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Parásitos , Humanos , Activación de Linfocitos/efectos de los fármacos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/farmacología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Vacunología , Flujo de Trabajo
10.
Front Immunol ; 12: 684116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025684

RESUMEN

Immunization with radiation-attenuated sporozoites (RAS) has been shown to protect against malaria infection, primarily through CD8 T cell responses, but protection is limited based on parasite strain. Therefore, while CD8 T cells are an ideal effector population target for liver stage malaria vaccine development strategies, such strategies must incorporate conserved epitopes that cover a large range of class I human leukocyte antigen (HLA) supertypes to elicit cross-strain immunity across the target population. This approach requires identifying and characterizing a wide range of CD8 T cell epitopes for incorporation into a vaccine such that coverage across a large range of class I HLA alleles is attained. Accordingly, we devised an experimental framework to identify CD8 T cell epitopes from novel and minimally characterized antigens found at the pre-erythrocytic stage of parasite development. Through in silico analysis we selected conserved P. falciparum proteins, using P. vivax orthologues to establish stringent conservation parameters, predicted to have a high number of T cell epitopes across a set of six class I HLA alleles representative of major supertypes. Using the decision framework, five proteins were selected based on the density and number of predicted epitopes. Selected epitopes were synthesized as peptides and evaluated for binding to the class I HLA alleles in vitro to verify in silico binding predictions, and subsequently for stimulation of human T cells using the Modular IMmune In-vitro Construct (MIMIC®) technology to verify immunogenicity. By combining the in silico tools with the ex vivo high throughput MIMIC platform, we identified 15 novel CD8 T cell epitopes capable of stimulating an immune response in alleles across the class I HLA panel. We recommend these epitopes should be evaluated in appropriate in vivo humanized immune system models to determine their protective efficacy for potential inclusion in future vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Hígado/parasitología , Plasmodium falciparum/inmunología , Alelos , Animales , Simulación por Computador , Experimentación Humana , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/genética
11.
NPJ Vaccines ; 6(1): 71, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986292

RESUMEN

Natural and vaccine-induced SARS-CoV-2 immunity in humans has been described but correlates of protection are not yet defined. T cells support the SARS-CoV-2 antibody response, clear virus-infected cells, and may be required to block transmission. In this study, we identified peptide epitopes associated with SARS-CoV-2 T-cell immunity. Using immunoinformatic methods, T-cell epitopes from spike, membrane, and envelope were selected for maximal HLA-binding potential, coverage of HLA diversity, coverage of circulating virus, and minimal potential cross-reactivity with self. Direct restimulation of PBMCs collected from SARS-CoV-2 convalescents confirmed 66% of predicted epitopes, whereas only 9% were confirmed in naive individuals. However, following a brief period of epitope-specific T-cell expansion, both cohorts demonstrated robust T-cell responses to 97% of epitopes. HLA-DR3 transgenic mouse immunization with peptides co-formulated with poly-ICLC generated a potent Th1-skewed, epitope-specific memory response, alleviating safety concerns of enhanced respiratory disease associated with Th2 induction. Taken together, these epitopes may be used to improve our understanding of natural and vaccine-induced immunity, and to facilitate the development of T-cell-targeted vaccines that harness pre-existing SARS-CoV-2 immunity.

12.
Clin Immunol ; 224: 108661, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412295

RESUMEN

Identification of T cell epitopes that are recognized by Tregs may elucidate the relative contributions of thymic Tregs and induced Tregs to control of autoimmune diseases and allergy. One such T regulatory cell epitope or 'Tregitope', derived from blood Factor V, is described here. Tregs responding to Tregitope FV621 are potent suppressors of CD4+ T effector responses to Tetanus Toxoid in an in vitro bystander suppression assay, strongly inhibit proliferation of effector CD8+ T cells, down-modulate CD86 and HLA DR on antigen-presenting cells, and enhance expression of granzyme B in Tregs. Tregitope FV621 also suppresses anti-OVA immune responses in vivo. The immunomodulatory effect of Tregitope FV621 is enhanced when conjugated to albumin, suggesting that the short half-life of Tregitope peptides can be prolonged. The in silico tools used to prospectively identify the FV Tregitope described here, when combined with in vitro /in vivo validating assays, may facilitate future Tregitope discoveries.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Epítopos de Linfocito T/metabolismo , Factor V/metabolismo , Linfocitos T Reguladores/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores/metabolismo , Efecto Espectador , Epítopos de Linfocito T/química , Factor V/química , Humanos , Inmunoglobulina G , Proteínas de la Membrana , Ratones , Ovalbúmina/inmunología , Péptidos/química , Toxoide Tetánico
13.
Front Immunol ; 11: 1301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695107

RESUMEN

Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.


Asunto(s)
Proteínas/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Terapia Biológica/efectos adversos , Terapia Biológica/métodos , Biomarcadores , Consenso , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Proteínas/uso terapéutico , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
Front Immunol ; 11: 442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318055

RESUMEN

Computational vaccinology includes epitope mapping, antigen selection, and immunogen design using computational tools. Tools that facilitate the in silico prediction of immune response to biothreats, emerging infectious diseases, and cancers can accelerate the design of novel and next generation vaccines and their delivery to the clinic. Over the past 20 years, vaccinologists, bioinformatics experts, and advanced programmers based in Providence, Rhode Island, USA have advanced the development of an integrated toolkit for vaccine design called iVAX, that is secure and user-accessible by internet. This integrated set of immunoinformatic tools comprises algorithms for scoring and triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, re-engineering or eliminating regulatory T cell epitopes, and re-designing antigens to induce immunogenicity and protection against disease for humans and livestock. Commercial and academic applications of iVAX have included identifying immunogenic T cell epitopes in the development of a T-cell based human multi-epitope Q fever vaccine, designing novel influenza vaccines, identifying cross-conserved T cell epitopes for a malaria vaccine, and analyzing immune responses in clinical vaccine studies. Animal vaccine applications to date have included viral infections of pigs such as swine influenza A, PCV2, and African Swine Fever. "Rapid-Fire" applications for biodefense have included a demonstration project for Lassa Fever and Q fever. As recent infectious disease outbreaks underscore the significance of vaccine-driven preparedness, the integrated set of tools available on the iVAX toolkit stand ready to help vaccine developers deliver genome-derived, epitope-driven vaccines.


Asunto(s)
Epítopos de Linfocito T/genética , Medicina de Precisión/métodos , Linfocitos T Reguladores/inmunología , Vacunas/inmunología , Virosis/inmunología , Animales , Bioingeniería , Bioterrorismo , Modelos Animales de Enfermedad , Humanos , Vacunación Masiva , Informática Médica , Vacunas/genética
15.
Vet Immunol Immunopathol ; 223: 110034, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32278900

RESUMEN

Porcine circovirus type 2 (PCV2) has one of the highest evolutionary rates among DNA viruses. Traditionally, PCV2 vaccines have been based on the 2a genotype as this was the first genotype discovered. Today, eight genotypes of PCV2 viruses have been identified, and, taken together with the rapid evolutionary rate, propensity to recombine, and high rate of vaccination, further variation in PCV2 is expected. For these reasons, there is a growing genetic gap between available vaccines and field strains. When selecting vaccines, it is important to consider vaccines that contain T cell epitopes that are well-matched to the circulating strains. To quantify the relatedness between PCV2 vaccines and field strains, we predicted and compared their T cell epitope content and calculated Epitope Content Comparison (EpiCC) scores using established in silico tools. T cell epitopes predicted to bind common class I and class II swine leukocyte antigen (SLA) alleles were identified from two major structural proteins, the capsid (encoded by ORF2) and the replicase (encoded by ORF1). The T cell epitope content of three commercial PCV2a-based vaccines (a baculovirus expressed PCV2a ORF2 [VacAlt], a PCV1-PCV2a chimeric virus vaccine [VacA] and a combination cPCV2a-cPCV2b chimeric virus vaccine [VacAB]) and an experimental PCV2b ORF2-based chimeric virus vaccine [VacB] (Table 1), were compared to that of 161 PCV2 field strains (representing genotypes a-f). The T cell epitope content and conservation between vaccine and field strains varied. While all vaccine strains provided broad coverage of the field strains including heterologous genotypes, none of the vaccines covered all the putative T cell epitopes identified in the field strains. PCV2a-based vaccine strains generally scored higher in terms of conserved epitope content against PCV2a field isolates but were not identical. The PCV2b-based vaccine strain had higher scores against PCV2b and PCV2d field strains. The combination PCV2a-PCV2b vaccine (VacAB) had, on average, the highest EpiCC score. PCV2 continues to evolve and EpiCC analysis provides a new tool to assess the possible impact of virus genetic divergence on T cell epitope coverage of vaccine strains. Given that multiple genotypes are currently found and may co-exist on farms, this analysis suggests that a combination of PCV2a and PCV2b vaccine strains may be required to provide optimal coverage of current and future field isolates.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/inmunología , Epítopos de Linfocito T/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Infecciones por Circoviridae/prevención & control , Circovirus/genética , Simulación por Computador , Epítopos de Linfocito T/inmunología , Genotipo , Inmunidad Celular , Porcinos , Enfermedades de los Porcinos/inmunología
16.
Hum Vaccin Immunother ; 16(2): 214-227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30614773

RESUMEN

The RTS,S/AS01 malaria vaccine will undergo a pilot vaccination study in sub-Saharan Africa beginning in 2019. RTS,S/AS01 Phase III trials reported an efficacy of 28.3% (children 5-17 months) and 18.3% (infants 6-12 weeks), with substantial variability across study sites. We postulated that the relatively low efficacy of the RTS,S vaccine and variability across sites may be due to lack of T-cell epitopes in the vaccine antigen, and due to the HLA distribution of the vaccinated population, and/or due to 'immune camouflage', an immune escape mechanism. To examine these hypotheses, we used immunoinformatics tools to compare T helper epitopes contained in RTS,S vaccine antigens with Plasmodium falciparum circumsporozoite protein (CSP) variants isolated from infected individuals in Malawi. The prevalence of epitopes restricted by specific HLA-DRB1 alleles was inversely associated with prevalence of the HLA-DRB1 allele in the Malawi study population, suggesting immune escape. In addition, T-cell epitopes in the CSP of strains circulating in Malawi were more often restricted by low-frequency HLA-DRB1 alleles in the population. Furthermore, T-cell epitopes that were highly conserved across CSP variants in Malawi possessed TCR-facing residues that were highly conserved in the human proteome, potentially reducing T-cell help through tolerance. The CSP component of the RTS,S vaccine also exhibited a low degree of T-cell epitope relatedness to circulating variants. These results suggest that RTS,S vaccine efficacy may be impacted by low T-cell epitope content, reduced presentation of T-cell epitopes by prevalent HLA-DRB1, high potential for human-cross-reactivity, and limited conservation with the CSP of circulating malaria strains.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Epítopos de Linfocito T/genética , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaui , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
17.
Vaccine ; 37(36): 5371-5381, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31331771

RESUMEN

Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.


Asunto(s)
Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Animales , Biología Computacional , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Celular/fisiología , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Masculino , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo
18.
Influenza Other Respir Viruses ; 11(6): 531-542, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29054116

RESUMEN

BACKGROUND: Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T-cell epitope cross-conservation may play an important role in cross-strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no similar correlate of protection has been identified for T-cell epitopes. OBJECTIVE: We developed a computational method (EpiCC) that facilitates pairwise comparison of protein sequences based on an immunological property-T-cell epitope content-rather than sequence identity, and evaluated its ability to classify swine IAV strain relatedness to estimate cross-protective potential of a vaccine strain for circulating viruses. METHODS: T-cell epitope relatedness scores were assessed for 23 IAV HA sequences representing the major H1 swine IAV phylo-clusters circulating in North American swine and HA sequences in a commercial inactivated vaccine (FluSure XP® ). Scores were compared to experimental data from previous efficacy studies. RESULTS: Higher EpiCC scores were associated with greater protection by the vaccine against strains for 23 field IAV strain vaccine comparisons. A threshold for EpiCC relatedness associated with full or partial protection in the absence of cross-reactive HI antibodies was identified. EpiCC scores for field strains for which FluSure protective efficacy is not yet available were also calculated. CONCLUSION: EpiCC thresholds can be evaluated for predictive accuracy of protection in future efficacy studies. EpiCC may also complement HI cross-reactivity and phylogeny for selection of influenza strains in vaccine development.


Asunto(s)
Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Hemaglutininas/inmunología , Virus de la Influenza A/química , Algoritmos , Animales , Computadores Moleculares , Protección Cruzada/genética , Protección Cruzada/inmunología , Mapeo Epitopo/métodos , Epítopos de Linfocito T/química , Hemaglutininas/química , Hemaglutininas/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/virología , Análisis de Secuencia de Proteína/métodos , Porcinos , Enfermedades de los Porcinos/virología , Potencia de la Vacuna
19.
Hum Vaccin Immunother ; 13(12): 2824-2836, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28575582

RESUMEN

Immunoinformatics tools were used to predict human leukocyte antigen (HLA) class II-restricted T cell epitopes within the envelope glycoproteins and nucleocapsid proteins of Ebola virus (EBOV) and Sudan virus (SUDV) and the structural proteins of Venezuelan equine encephalitis virus (VEEV). Selected epitopes were tested for binding to soluble HLA molecules representing 5 class II alleles (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, and DRB1*1501). All but one of the 25 tested peptides bound to at least one of the DRB1 alleles, and 4 of the peptides bound at least moderately or weakly to all 5 DRB1 alleles. Additional algorithms were used to design a single "string-of-beads" expression construct with 44 selected epitopes arranged to avoid creation of spurious junctional epitopes. Seventeen of these 44 predicted epitopes were conserved between the major histocompatibility complex (MHC) of humans and mice, allowing initial testing in mice. BALB/c mice vaccinated with the multi-epitope construct developed statistically significant cellular immune responses to EBOV, SUDV, and VEEV peptides as measured by interferon (IFN)-γ ELISpot assays. Significant levels of antibodies to VEEV, but not EBOV, were also detected in vaccinated BALB/c mice. To assess immunogenicity in the context of a human MHC, HLA-DR3 transgenic mice were vaccinated with the multi-epitope construct and boosted with a mixture of the 25 peptides used in the binding assays. The vaccinated HLA-DR3 mice developed significant cellular immune responses to 4 of the 25 (16%) tested individual class II peptides as measured by IFN-γ ELISpot assays. In addition, these mice developed antibodies against EBOV and VEEV as measured by ELISA. While a low but significant level of protection was observed in vaccinated transgenic mice after aerosol exposure to VEEV, no protection was observed after intraperitoneal challenge with mouse-adapted EBOV. These studies provide proof of concept for the use of an informatics approach to design a multi-agent, multi-epitope immunogen and provide a basis for further testing aimed at focusing immune responses toward desired protective T cell epitopes.


Asunto(s)
Ebolavirus/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Ebolavirus/genética , Virus de la Encefalitis Equina Venezolana/genética , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/genética , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Transgénicos , Unión Proteica , Linfocitos T/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
20.
Clin Immunol ; 176: 31-41, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28089609

RESUMEN

Interferon α (IFN-α) exerts potent antiviral, immunomodulatory, and antiproliferative activity and have proven clinical utility in chronic hepatitis B and C virus infections. However, repeated IFN-α administration induces neutralizing antibodies (NAb) against the therapeutic in a significant number of patients. Associations between IFN-α immunogenicity and loss of efficacy have been described. So as to improve the in vivo biological efficacy of IFN-α, a long lasting hyperglycosylated protein (4N-IFN) derived from IFN-α2b wild type (WT-IFN) was developed. However, in silico analysis performed using established in silico methods revealed that 4N-IFN had more T cell epitopes than WT-IFN. In order to develop a safer and more efficient IFN therapy, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of 4N-IFN. Using the OptiMatrix in silico tool in ISPRI, the 4N-IFN sequence was modified to reduce HLA binding potential of specific T cell epitopes. Following verification of predictions by HLA binding assays, eight modifications were selected and integrated in three variants: 4N-IFN(VAR1), (VAR2) and (VAR3). Two of the three variants (VAR1 and VAR3) retained anti-viral function and demonstrated reduced T-cell immunogenicity in terms of T-cell proliferation and Th1 and Th2 cytokine levels, when compared to controls (commercial NG-IFN (non-glycosylated), PEG-IFN, WT-IFN and 4N-IFN). It was previously demonstrated that N-glycosylation improved IFN-α pharmacokinetic properties. Here, we further reduce immunogenicity as measured in vitro using T cell assays and cytokine profiling by modifying the T cell epitope content of a protein (de-immunizing). Taking into consideration the present results and previously reported immunogenicity data for commercial IFN-α2b variants, 4N-IFN(VAR1) and 4N-IFN-4N(VAR3) appear to be promising candidates for improved IFN-α therapy of HCV and HBV.


Asunto(s)
Antivirales/inmunología , Antivirales/uso terapéutico , Interferón-alfa/inmunología , Interferón-alfa/uso terapéutico , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Adulto , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Células CHO , Línea Celular , Proliferación Celular/efectos de los fármacos , Cricetulus , Citocinas/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/uso terapéutico , Femenino , Glicosilación/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/inmunología , Hepatitis C/tratamiento farmacológico , Hepatitis C/inmunología , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...