Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 15(5): 1127-1139, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176122

RESUMEN

Mutations in KCNH2 can lead to long QT syndrome type 2. Variable disease manifestation observed with this channelopathy is associated with the location and type of mutation within the protein, complicating efforts to predict patient risk. Here, we demonstrated phenotypic differences in cardiomyocytes derived from isogenic human induced pluripotent stem cells (hiPSC-CMs) genetically edited to harbor mutations either within the pore or tail region of the ion channel. Electrophysiological analysis confirmed that the mutations prolonged repolarization of the hiPSC-CMs, with differences between the mutations evident in monolayer cultures. Blocking the hERG channel revealed that the pore-loop mutation conferred greater susceptibility to arrhythmic events. These findings showed that subtle phenotypic differences related to KCNH2 mutations could be captured by hiPSC-CMs under genetically matched conditions. Moreover, the results support hiPSC-CMs as strong candidates for evaluating the underlying severity of individual KCNH2 mutations in humans, which could facilitate patient risk stratification.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/fisiología , Arritmias Cardíacas/inducido químicamente , Línea Celular , Canal de Potasio ERG1/genética , Electrofisiología , Edición Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/genética , Modelos Biológicos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Piperidinas/efectos adversos , Piridinas/efectos adversos
2.
Proc Natl Acad Sci U S A ; 117(26): 15182-15192, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554494

RESUMEN

The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.


Asunto(s)
Antineoplásicos/efectos adversos , Cromatina/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/efectos adversos , Animales , Línea Celular , Doxorrubicina/análogos & derivados , Doxorrubicina/síntesis química , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Cardiopatías/inducido químicamente , Histonas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones
3.
Cell Stem Cell ; 26(6): 862-879.e11, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32459996

RESUMEN

Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Endoteliales , Humanos , Miocitos Cardíacos , Células del Estroma
4.
J Mol Cell Cardiol ; 141: 54-64, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205183

RESUMEN

Cardiovascular disease is often associated with cardiac remodeling, including cardiac fibrosis, which may lead to increased stiffness of the heart wall. This stiffness in turn may cause subsequent failure of cardiac myocytes, however the response of these cells to increased substrate stiffness is largely unknown. To investigate the contractile response of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to increased substrate stiffness, we generated a stable transgenic human pluripotent stem cell line expressing a fusion protein of α-Actinin and fluorescent mRubyII in a previously characterized NKX2.5-GFP reporter line. Cardiomyocytes differentiated from this line were subjected to a substrate with stiffness ranging from 4 kPa to 101 kPa, while contraction of sarcomeres and bead displacement in the substrate were measured for each single cardiomyocyte. We found that sarcomere dynamics in hPSC-CMs on polyacrylamide gels of increasing stiffness are not affected above physiological levels (21 kPa), but that contractile force increases up to a stiffness of 90 kPa, at which cell shortening, deducted from bead displacement, is significantly reduced compared to physiological stiffness. We therefore hypothesize that this discrepancy may be the cause of intracellular stress that leads to hypertrophy and consequent heart failure in vivo.


Asunto(s)
Actinina/metabolismo , Genes Reporteros , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Acrilamida/química , Actinina/genética , Secuencia de Bases , Fenómenos Biomecánicos , Diferenciación Celular , Femenino , Fluorescencia , Gelatina/química , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Sarcómeros/metabolismo , Especificidad por Sustrato
5.
Nat Commun ; 10(1): 4325, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541103

RESUMEN

Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are increasingly recognized as valuable for determining the effects of drugs on ion channels but they do not always accurately predict contractile responses of the human heart. This is in part attributable to their immaturity but the sensitivity of measurement tools may also be limiting. Measuring action potential, calcium flux or contraction individually misses critical information that is captured when interrogating the complete excitation-contraction coupling cascade simultaneously. Here, we develop an hypothesis-based statistical algorithm that identifies mechanisms of action. We design and build a high-speed optical system to measure action potential, cytosolic calcium and contraction simultaneously using fluorescent sensors. These measurements are automatically processed, quantified and then assessed by the algorithm. Multiplexing these three critical physical features of hiPSC-CMs allows identification of all major drug classes affecting contractility with detection sensitivities higher than individual measurement of action potential, cytosolic calcium or contraction.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Algoritmos , Calcio/metabolismo , Biología Computacional , Colorantes Fluorescentes , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Canales Iónicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Imagen Óptica
6.
Curr Protoc Hum Genet ; 99(1): e67, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30253059

RESUMEN

Quantification of contraction is essential to the study of cardiac diseases, injury, and responses to drugs. While there are many techniques to assess contractility, most rely on costly, dedicated hardware and advanced informatics, and can only be used in specific experimental models. We have developed an automated open-source software tool (MUSCLEMOTION) for use with standard imaging equipment, to assess contractility in vitro and in vivo and quantify responses to drugs and diseases. We describe high-speed and disturbance-free acquisition of images from either electrically paced or non-paced human pluripotent stem cell-derived cardiomyocytes, isolated adult cardiomyocytes, zebrafish hearts, and human echocardiograms. Recordings are then used as input for automated batch analysis by the MUSCLEMOTION software tool configured with specific settings and parameters tailored to the recording technique. Details on accuracy, interpretation, and troubleshooting are discussed. Acquisition duration depends on the experimental setup and aim, but quantification of drug or disease responses in an in vitro muscle model can typically be completed within a few hours. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Programas Informáticos , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Pez Cebra
7.
Circ Res ; 122(3): e5-e16, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282212

RESUMEN

RATIONALE: There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. OBJECTIVE: Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. METHODS AND RESULTS: MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. CONCLUSIONS: Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models.


Asunto(s)
Contracción Miocárdica , Miocitos Cardíacos/fisiología , Programas Informáticos , Algoritmos , Animales , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Fármacos Cardiovasculares/farmacología , Diferenciación Celular , Células Cultivadas , Subunidades beta de la Proteína de Unión al GTP/deficiencia , Subunidades beta de la Proteína de Unión al GTP/genética , Humanos , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Masculino , Microscopía/métodos , Modelos Cardiovasculares , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Fenotipo , Células Madre Pluripotentes/citología , Conejos , Grabación en Video , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
8.
Cardiovasc Res ; 113(10): 1186-1197, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899000

RESUMEN

AIMS: RHOA-ROCK signalling regulates cell migration, proliferation, differentiation, and transcription. RHOA is expressed in the developing cardiac conduction system in chicken and mice. In early development, the entire sinus venosus myocardium, including both the transient left-sided and the definitive sinoatrial node (SAN), has pacemaker potential. Later, pacemaker potential is restricted to the right-sided SAN. Disruption of RHOA expression in adult mice causes arrhythmias including bradycardia and atrial fibrillation, the mechanism of which is unknown but presumed to affect the SAN. The aim of this study is to assess the role of RHOA-ROCK signalling in SAN development in the chicken heart. METHODS AND RESULTS: ROCK signalling was inhibited chemically in embryonic chicken hearts using Y-27632. This prolonged the immature state of the sinus venosus myocardium, evidenced by up-regulation of the transcription factor ISL1, wide distribution of pacemaker potential, and significantly reduced heart rate. Furthermore ROCK inhibition caused aberrant expression of typical SAN genes: ROCK1, ROCK2, SHOX2, TBX3, TBX5, ISL1, HCN4, CX40, CAV3.1, and NKX2.5 and left-right asymmetry genes: PITX2C and NODAL. Anatomical abnormalities in pulmonary vein development were also observed. Patch clamp electrophysiology confirmed the immature phenotype of the SAN cells and a residual left-sided sinus venosus myocardium pacemaker-like potential. CONCLUSIONS: RHOA-ROCK signalling is involved in establishing the right-sided SAN as the definitive pacemaker of the heart and restricts typical pacemaker gene expression to the right side of the sinus venosus myocardium.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Transducción de Señal , Nodo Sinoatrial/enzimología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/enzimología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Relojes Biológicos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca , Morfogénesis , Miocitos Cardíacos/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/embriología , Nodo Sinoatrial/fisiopatología , Factores de Tiempo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/genética
9.
J Vis Exp ; (123)2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28570546

RESUMEN

Cardiomyocytes can now be derived with high efficiency from both human embryonic and human induced-Pluripotent Stem Cells (hPSC). hPSC-derived cardiomyocytes (hPSC-CMs) are increasingly recognized as having great value for modeling cardiovascular diseases in humans, especially arrhythmia syndromes. They have also demonstrated relevance as in vitro systems for predicting drug responses, which makes them potentially useful for drug-screening and discovery, safety pharmacology and perhaps eventually for personalized medicine. This would be facilitated by deriving hPSC-CMs from patients or susceptible individuals as hiPSCs. For all applications, however, precise measurement and analysis of hPSC-CM electrical properties are essential for identifying changes due to cardiac ion channel mutations and/or drugs that target ion channels and can cause sudden cardiac death. Compared with manual patch-clamp, multi-electrode array (MEA) devices offer the advantage of allowing medium- to high-throughput recordings. This protocol describes how to dissociate 2D cell cultures of hPSC-CMs to small aggregates and single cells and plate them on MEAs to record their spontaneous electrical activity as field potential. Methods for analyzing the recorded data to extract specific parameters, such as the QT and the RR intervals, are also described here. Changes in these parameters would be expected in hPSC-CMs carrying mutations responsible for cardiac arrhythmias and following addition of specific drugs, allowing detection of those that carry a cardiotoxic risk.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Célula , Células Cultivadas , Electrodos , Humanos
10.
Development ; 144(6): 1008-1017, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28279973

RESUMEN

Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs.


Asunto(s)
Diferenciación Celular , Células Endoteliales/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Ingeniería de Tejidos/métodos , Antígenos CD34/metabolismo , Separación Celular , Fenómenos Electrofisiológicos , Humanos , Mesodermo/citología , Células Madre Pluripotentes/metabolismo , Sarcómeros/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
Stem Cells ; 34(8): 2008-15, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27250776

RESUMEN

Cardiomyocytes from human pluripotent stem cells (hPSC) are of growing interest as models to understand mechanisms underlying genetic disease, identify potential drug targets and for safety pharmacology as they may predict human relevant effects more accurately and inexpensively than animals or other cell models. Crucial to their optimal use are accurate methods to quantify cardiomyocyte phenotypes accurately and reproducibly. Here, we review current methods for determining biophysical parameters of hPSC-derived cardiomyocytes (hPSC-CMs) that recapitulate disease and drug responses. Even though hPSC-CMs as currently available are immature, various biophysical methods are nevertheless already providing useful insights into the biology of the human heart and its maladies. Advantages and limitations of assays currently available looking toward applications of hPSC-CMs are described with examples of how they have been used to date. This will help guide the choice of biophysical method to characterize healthy cardiomyocytes and their pathologies in vitro. Stem Cells 2016;34:2008-2015.


Asunto(s)
Enfermedad , Miocitos Cardíacos/fisiología , Preparaciones Farmacéuticas/metabolismo , Células Madre Pluripotentes/citología , Fenómenos Biofísicos , Señalización del Calcio , Humanos
12.
Biochem Biophys Res Commun ; 467(4): 998-1005, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26456652

RESUMEN

One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.


Asunto(s)
Calcio/metabolismo , Dexametasona/farmacología , Células Madre Embrionarias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Línea Celular , Dexametasona/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal
13.
Development ; 142(18): 3231-8, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26209647

RESUMEN

Differentiated derivatives of human pluripotent stem cells (hPSCs) are often considered immature because they resemble foetal cells more than adult, with hPSC-derived cardiomyocytes (hPSC-CMs) being no exception. Many functional features of these cardiomyocytes, such as their cell morphology, electrophysiological characteristics, sarcomere organization and contraction force, are underdeveloped compared with adult cardiomyocytes. However, relatively little is known about how their gene expression profiles compare with the human foetal heart, in part because of the paucity of data on the human foetal heart at different stages of development. Here, we collected samples of matched ventricles and atria from human foetuses during the first and second trimester of development. This presented a rare opportunity to perform gene expression analysis on the individual chambers of the heart at various stages of development, allowing us to identify not only genes involved in the formation of the heart, but also specific genes upregulated in each of the four chambers and at different stages of development. The data showed that hPSC-CMs had a gene expression profile similar to first trimester foetal heart, but after culture in conditions shown previously to induce maturation, they cluster closer to the second trimester foetal heart samples. In summary, we demonstrate how the gene expression profiles of human foetal heart samples can be used for benchmarking hPSC-CMs and also contribute to determining their equivalent stage of development.


Asunto(s)
Diferenciación Celular/fisiología , Feto/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Transcriptoma , Feto/metabolismo , Perfilación de la Expresión Génica , Humanos
14.
Biomaterials ; 51: 138-150, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25771005

RESUMEN

Cardiomyocytes from human pluripotent stem cells (hPSC-CM) have many potential applications in disease modelling and drug target discovery but their phenotypic similarity to early fetal stages of cardiac development limits their applicability. In this study we compared contraction stresses of hPSC-CM to 2nd trimester human fetal derived cardiomyocytes (hFetal-CM) by imaging displacement of fluorescent beads by single contracting hPSC-CM, aligned by microcontact-printing on polyacrylamide gels. hPSC-CM showed distinctly lower contraction stress than cardiomyocytes isolated from hFetal-CM. To improve maturation of hPSC-CM in vitro we made use of commercial media optimized for cardiomyocyte maturation, which promoted significantly higher contraction stress in hPSC-compared with hFetal-CM. Accordingly, other features of cardiomyocyte maturation were observed, most strikingly increased upstroke velocities and action potential amplitudes, lower resting membrane potentials, improved sarcomeric organization and alterations in cardiac-specific gene expression. Performing contraction force and electrophysiology measurements on individual cardiomyocytes revealed strong correlations between an increase in contraction force and a rise of the upstroke velocity and action potential amplitude and with a decrease in the resting membrane potential. We showed that under standard differentiation conditions hPSC-CM display lower contractile force than primary hFetal-CM and identified conditions under which a commercially available culture medium could induce molecular, morphological and functional maturation of hPSC-CM in vitro. These results are an important contribution for full implementation of hPSC-CM in cardiac disease modelling and drug discovery.


Asunto(s)
Diferenciación Celular , Fenómenos Electrofisiológicos , Contracción Miocárdica , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Fenómenos Biomecánicos , Feto/citología , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Humanos , Sarcómeros/metabolismo , Estrés Fisiológico
15.
J Cell Mol Med ; 18(8): 1509-18, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24981391

RESUMEN

It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic- (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC- and hiPSC-derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC-derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.


Asunto(s)
Cardiomiopatía Hipertrófica/patología , Proteínas Portadoras/genética , Medios de Cultivo/química , Células Madre Embrionarias/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Suero/química , Potenciales de Acción , Animales , Animales Recién Nacidos , Calcio/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Células Cultivadas , Dermis/citología , Dermis/metabolismo , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Células Madre Pluripotentes Inducidas/citología , Ratones , Mutación/genética , Miocitos Cardíacos/citología , Fenotipo , Ratas
16.
EMBO J ; 32(24): 3161-75, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24213244

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long-QT syndromes (LQTS). To study the LQT2-associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC-derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC-derived CMs. Further characterization of N996I-HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Mutación , Células Madre Pluripotentes , Potenciales de Acción/genética , Adulto , Células Cultivadas , Canal de Potasio ERG1 , Células Madre Embrionarias/fisiología , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Humanos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Fenotipo , Células Madre Pluripotentes/fisiología , Transporte de Proteínas/genética , Factores de Transcripción/genética
17.
Mol Cell Endocrinol ; 273(1-2): 42-50, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17590503

RESUMEN

Inhibition of NF-kappaB transcriptional activity by steroid receptors is the basis for the antiinflammatory actions of steroid hormones and the molecular mechanism underlying this cross-talk is thought to involve direct protein-protein interactions. In this study, we show that estrogen receptor (ER)alpha and NF-kappaB interact in vivo by using fluorescence resonance energy transfer (FRET) and co-immunoprecipitation. U2-OS cells were used to study direct interactions between fluorescent fusion proteins of ERalpha and the NF-kappaB subunits p50 and p65. Interactions were observed only in the nucleus and maximal FRET signal was detected when ERalpha is co-expressed with both NF-kappaB subunits and cells were stimulated with estrogen. This is in agreement with the induction of nuclear co-localization of the proteins under this condition. Moreover, in a U2-OS clone stably expressing ERalpha, interaction with NF-kappaB was confirmed. A p65 deletion mutant lacking the Rel homology domain was strongly impaired in its interaction with ERalpha showing the importance of this domain. Taken together, these findings provide a strong basis for the direct protein-protein interaction model for cross-talk between ERalpha and NF-kappaB.


Asunto(s)
Núcleo Celular/metabolismo , Receptor alfa de Estrógeno/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Células Clonales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/genética , Transcripción Genética
18.
Stem Cell Res ; 1(1): 9-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19383383

RESUMEN

Regeneration of the myocardium by transplantation of cardiomyocytes is an emerging therapeutic strategy. Human embryonic stem cells (HESC) form cardiomyocytes readily but until recently at low efficiency, so that preclinical studies on transplantation in animals are only just beginning. Here, we show the results of the first long-term (12 weeks) analysis of the fate of HESC-derived cardiomyocytes transplanted intramyocardially into healthy, immunocompromised (NOD-SCID) mice and in NOD-SCID mice that had undergone myocardial infarction (MI). Transplantation of mixed populations of differentiated HESC containing 20-25% cardiomyocytes in control mice resulted in rapid formation of grafts in which the cardiomyocytes became organized and matured over time and the noncardiomyocyte population was lost. Grafts also formed in mice that had undergone MI. Four weeks after transplantation and MI, this resulted in significant improvement in cardiac function measured by magnetic resonance imaging. However, at 12 weeks, this was not sustained despite graft survival. This suggested that graft size was still limiting despite maturation and organization of the transplanted cells. More generally, the results argued for requiring a minimum of 3 months follow-up in studies claiming to observe improved cardiac function, independent of whether HESC or other (adult) cell types are used for transplantation.


Asunto(s)
Trasplante de Células/métodos , Células Madre Embrionarias/citología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Supervivencia de Injerto , Humanos , Ratones , Ratones SCID , Miocitos Cardíacos/trasplante , Regeneración , Trasplante Heterólogo , Resultado del Tratamiento
19.
J Biol Chem ; 279(28): 28873-9, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15126506

RESUMEN

FOXO transcription factors have important roles in metabolism, cellular proliferation, stress tolerance, and aging. FOXOs are negatively regulated by protein kinase B/c-Akt-mediated phosphorylation. Here we show that FOXO factors are also subject to regulation by reversible acetylation. We provide evidence that the acetyltransferase CREB-binding protein (CBP) binds FOXO resulting in acetylation of FOXO. This acetylation inhibits FOXO transcriptional activity. Binding of CBP and acetylation are induced after treatment of cells with peroxide stress. Deacetylation of FOXOs involves binding of the NAD-dependent deacetylase hSir2(SIRT1). Accordingly, hSir2(SIRT1)-mediated deacetylation precludes FOXO inhibition through acetylation and thereby prolongs FOXO-dependent transcription of stress-regulating genes. These data demonstrate that acetylation functions in a second pathway of negative control for FOXO factors and provides a novel mechanism whereby hSir2(SIRT1) can promote cellular survival and increase lifespan.


Asunto(s)
Histona Desacetilasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidantes/metabolismo , Estrés Oxidativo , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteína de Unión a CREB , Proteínas de Ciclo Celular , Línea Celular Tumoral , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Sirtuina 1 , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética
20.
Int J Dev Biol ; 48(1): 47-55, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15005574

RESUMEN

The clinical application of stem cell therapies is still limited by the ability to produce defined, differentiated cell populations in large numbers in culture. High throughput screens to identify factors which enhance differentiation to particular lineages and promote expansion of precursors in culture are dependent on the development of sensitive and reproducible assays for screening. Here we describe a bioassay to identify factors with cardiomyogenic activity which enhance the yield of cardiomyocytes from undifferentiated stem cells. The assay is based on a Green Fluorescent Protein (GFP) reporter under the transcriptional control of the 250 bp MLC-2v promoter expressed in pluripotent P19 embryonal carcinoma cells. We show that reporter expression is limited to developing cardiomyocytes and can be used to determine quantitatively the number of ventricular cardiomyocytes formed in cultures under inducing or non-inducing conditions. This assay differs from all others described previously in that it has an easily quantifiable readout, there is negligible background differentiation in the absence of exogenous cardiogenic factors and it is carried out feeder cell-free. Thus, it is entirely independent of competing differentiation inhibitory factors, such as leukemia inhibitory factor. Patch clamp electrophysiology of the GFP-positive cells confirmed their functional ventricular phenotype and indicated that selection on the basis of GFP would provide cells suitable for transplantation.


Asunto(s)
Diferenciación Celular , Genes Reporteros/genética , Proteínas Luminiscentes/metabolismo , Miocitos Cardíacos/citología , Células Madre/citología , Animales , Biomarcadores/análisis , Línea Celular , Células Clonales/metabolismo , Electrofisiología , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas/genética , Ratas , Células Madre/metabolismo , Tropomiosina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...