Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872029

RESUMEN

Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.

2.
Nat Plants ; 10(5): 798-814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714768

RESUMEN

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo A , Fosforilación , Fitocromo A/metabolismo , Fitocromo A/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Separación de Fases
3.
Plant J ; 117(6): 1893-1913, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38289877

RESUMEN

Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo , Luz , Fitomejoramiento , Plantas , Estrés Fisiológico
4.
Proc Natl Acad Sci U S A ; 120(34): e2302901120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590408

RESUMEN

Abscisic acid (ABA), a classical plant hormone, plays an essential role in plant adaptation to environmental stresses. The ABA signaling mechanisms have been extensively investigated, and it was shown that the PYR1 (PYRABACTIN RESISTANCE1)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) ABA receptors, the PP2C coreceptors, and the SnRK2 protein kinases constitute the core ABA signaling module responsible for ABA perception and initiation of downstream responses. We recently showed that ABA signaling is modulated by light signals, but the underlying molecular mechanisms remain largely obscure. In this study, we established a system in yeast cells that was not only successful in reconstituting a complete ABA signaling pathway, from hormone perception to ABA-responsive gene expression, but also suitable for functionally characterizing the regulatory roles of additional factors of ABA signaling. Using this system, we analyzed the roles of several light signaling components, including the red and far-red light photoreceptors phytochrome A (phyA) and phyB, and the photomorphogenic central repressor COP1, in the regulation of ABA signaling. Our results showed that both phyA and phyB negatively regulated ABA signaling, whereas COP1 positively regulated ABA signaling in yeast cells. Further analyses showed that photoactivated phyA interacted with the ABA coreceptors ABI1 and ABI2 to decrease their interactions with the ABA receptor PYR1. Together, data from our reconstituted yeast ABA signaling system provide evidence that photoactivated photoreceptors attenuate ABA signaling by directly interacting with the key components of the core ABA signaling module, thus conferring enhanced ABA tolerance to light-grown plants.


Asunto(s)
Fitocromo A , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Fototransducción
5.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049969

RESUMEN

Oxalate is a divalent organic anion that affects many biological and commercial processes. It is derived from plant sources, such as spinach, rhubarb, tea, cacao, nuts, and beans, and therefore is commonly found in raw or processed food products. Oxalate can also be made endogenously by humans and other mammals as a byproduct of hepatic enzymatic reactions. It is theorized that plants use oxalate to store calcium and protect against herbivory. Clinically, oxalate is best known to be a major component of kidney stones, which commonly contain calcium oxalate crystals. Oxalate can induce an inflammatory response that decreases the immune system's ability to remove renal crystals. When formulated with platinum as oxaliplatin (an anticancer drug), oxalate has been proposed to cause neurotoxicity and nerve pain. There are many sectors of industry that are hampered by oxalate, and others that depend on it. For example, calcium oxalate is troublesome in the pulp industry and the alumina industry as it deposits on machinery. On the other hand, oxalate is a common active component of rust removal and cleaning products. Due to its ubiquity, there is interest in developing efficient methods to quantify oxalate. Over the past four decades, many diverse methods have been reported. These approaches include electrochemical detection, liquid chromatography or gas chromatography coupled with mass spectrometry, enzymatic degradation of oxalate with oxalate oxidase and detection of hydrogen peroxide produced, and indicator displacement-based methods employing fluorescent or UV light-absorbing compounds. Enhancements in sensitivity have been reported for both electrochemical and mass-spectrometry-based methods as recently as this year. Indicator-based methods have realized a surge in interest that continues to date. The diversity of these approaches, in terms of instrumentation, sample preparation, and sensitivity, has made it clear that no single method will work best for every purpose. This review describes the strengths and limitations of each method, and may serve as a reference for investigators to decide which approach is most suitable for their work.


Asunto(s)
Cálculos Renales , Oxalatos , Humanos , Animales , Oxalato de Calcio , Cromatografía de Gases y Espectrometría de Masas , Riñón/metabolismo , Mamíferos/metabolismo
6.
Plant Physiol ; 192(4): 2768-2784, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37096684

RESUMEN

In flowering plants, hundreds of RNA editing events occur in the chloroplasts and mitochondria during posttranscriptional processes. Although several pentatricopeptide repeat (PPR) proteins have been shown to form the editosome core, the precise interactions between the different editing factors are still obscure. Here, we isolated an Arabidopsis (Arabidopsis thaliana) PPR protein, designated DELAYED GREENING 409 (DG409), that was dually targeted to chloroplasts and mitochondria. This protein consists of 409 amino acids with 7 PPR motifs but lacks a C-terminal E, E+, or DYW domain. A mild dg409 knockdown mutant displays a sickly phenotype. In this mutant, the young leaves are pale green and turn green at maturity, and the development of chloroplasts and mitochondria is severely disrupted. Complete loss of DG409 function results in defective embryos. Transcriptomic analysis of the dg409 knockdown plants showed some editing defects in genes from both organelles, including CASEINOLYTIC PROTEASE P (clpP)-559, RNA POLYMERASE SUBUNIT ALPHA (rpoA)-200, ACETYL-COA CARBOXYLASE CARBOXYL TRANSFERASE SUBUNIT BETA (accD)-1568, NADH DEHYDROGENASE SUBUNIT 7 (nad7)-1505, and RIBOSOMAL PROTEIN S3 (rps3)-1344. RNA immunoprecipitation showed that DG409 was associated with the targeted transcripts in vivo. Interaction assays revealed that DG409 directly interacted with 2 DYW-type PPR proteins (EARLY CHLOROPLAST BIOGENESIS2 [AtECB2] and DYW DOMAIN PROTEIN2 [DYW2]) and 3 multiple organellar RNA editing factors (MORF2, MORF8, and MORF9). These results indicate that DG409 is involved in RNA editing via protein complexes and is therefore essential for chloroplast and mitochondrial development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
7.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119311

RESUMEN

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
8.
Nat Biotechnol ; 41(1): 120-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229611

RESUMEN

The genomic basis underlying the selection for environmental adaptation and yield-related traits in maize remains poorly understood. Here we carried out genome-wide profiling of the small RNA (sRNA) transcriptome (sRNAome) and transcriptome landscapes of a global maize diversity panel under dry and wet conditions and uncover dozens of environment-specific regulatory hotspots. Transgenic and molecular studies of Drought-Related Environment-specific Super eQTL Hotspot on chromosome 8 (DRESH8) and ZmMYBR38, a target of DRESH8-derived small interfering RNAs, revealed a transposable element-mediated inverted repeats (TE-IR)-derived sRNA- and gene-regulatory network that balances plant drought tolerance with yield-related traits. A genome-wide scan revealed that TE-IRs associate with drought response and yield-related traits that were positively selected and expanded during maize domestication. These results indicate that TE-IR-mediated posttranscriptional regulation is a key molecular mechanism underlying the tradeoff between crop environmental adaptation and yield-related traits, providing potential genomic targets for the breeding of crops with greater stress tolerance but uncompromised yield.


Asunto(s)
Resistencia a la Sequía , ARN Pequeño no Traducido , Zea mays/genética , Fitomejoramiento/métodos , Fenotipo , Sequías , Elementos Transponibles de ADN/genética , Estrés Fisiológico/genética
9.
Trends Plant Sci ; 27(8): 742-745, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35501261

RESUMEN

Over the past few years, rapeseed yields have been considerably lower than those of cereal crops, and progress has been slow due to its limitations for genetic improvement. Here, we propose a comprehensive strategy to consider the interactions between genetics, management practices, and environment, concentrating on using ideotype and heterosis to maximize yield.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Vigor Híbrido
10.
Plant Cell ; 34(6): 2286-2308, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35263433

RESUMEN

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a well-characterized E3 ubiquitin ligase, is a central repressor of seedling photomorphogenic development in darkness. However, whether COP1 is involved in modulating abscisic acid (ABA) signaling in darkness remains largely obscure. Here, we report that COP1 is a positive regulator of ABA signaling during Arabidopsis seedling growth in the dark. COP1 mediates ABA-induced accumulation of ABI5, a transcription factor playing a key role in ABA signaling, through transcriptional and post-translational regulatory mechanisms. We further show that COP1 physically interacts with ABA-hypersensitive DCAF1 (ABD1), a substrate receptor of the CUL4-DDB1 E3 ligase targeting ABI5 for degradation. Accordingly, COP1 directly ubiquitinates ABD1 in vitro, and negatively regulates ABD1 protein abundance in vivo in the dark but not in the light. Therefore, COP1 promotes ABI5 protein stability post-translationally in darkness by destabilizing ABD1 in response to ABA. Interestingly, we reveal that ABA induces the nuclear accumulation of COP1 in darkness, thus enhancing its activity in propagating the ABA signal. Together, our study uncovers that COP1 modulates ABA signaling during seedling growth in darkness by mediating ABA-induced ABI5 accumulation, demonstrating that plants adjust their ABA signaling mechanisms according to their light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Integr Plant Biol ; 64(2): 393-411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34984823

RESUMEN

As two of the most important environmental factors, light and temperature regulate almost all aspects of plant growth and development. Under natural conditions, light is accompanied by warm temperatures and darkness by cooler temperatures, suggesting that light and temperature are tightly associated signals for plants. Indeed, accumulating evidence shows that plants have evolved a wide range of mechanisms to simultaneously perceive and respond to dynamic changes in light and temperature. Notably, the photoreceptor phytochrome B (phyB) was recently shown to function as a thermosensor, thus reinforcing the notion that light and temperature signaling pathways are tightly associated in plants. In this review, we summarize and discuss the current understanding of the molecular mechanisms integrating light and temperature signaling pathways in plants, with the emphasis on recent progress in temperature sensing, light control of plant freezing tolerance, and thermomorphogenesis. We also discuss the questions that are crucial for a further understanding of the interactions between light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo B/metabolismo , Plantas/metabolismo , Transducción de Señal , Temperatura
12.
Plant Cell ; 34(1): 633-654, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741605

RESUMEN

Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fitocromo A/genética , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo
14.
Nat Commun ; 12(1): 4470, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294690

RESUMEN

Gravity is a critical environmental factor regulating directional growth and morphogenesis in plants, and gravitropism is the process by which plants perceive and respond to the gravity vector. The cytoskeleton is proposed to play important roles in gravitropism, but the underlying mechanisms are obscure. Here we use genetic screening in Physcomitrella patens, to identify a locus GTRC, that when mutated, reverses the direction of protonemal gravitropism. GTRC encodes a processive minus-end-directed KCHb kinesin, and its N-terminal, C-terminal and motor domains are all essential for transducing the gravity signal. Chimeric analysis between GTRC/KCHb and KCHa reveal a unique role for the N-terminus of GTRC in gravitropism. Further study shows that gravity-triggered normal asymmetric distribution of actin filaments in the tip of protonema is dependent on GTRC. Thus, our work identifies a microtubule-based cellular motor that determines the direction of plant gravitropism via mediating the asymmetric distribution of actin filaments.


Asunto(s)
Bryopsida/fisiología , Gravitropismo/fisiología , Cinesinas/fisiología , Proteínas de Plantas/fisiología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiología , Secuencia de Bases , Bryopsida/genética , Mapeo Cromosómico , Citoesqueleto/química , Citoesqueleto/fisiología , ADN de Plantas/genética , Genes de Plantas , Gravitropismo/genética , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/fisiología , Mutagénesis , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos
15.
Genome Biol ; 22(1): 185, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34162419

RESUMEN

BACKGROUND: Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. RESULTS: Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. CONCLUSION: Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Zea mays/genética , Sequías , Procesamiento Automatizado de Datos , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Estrés Fisiológico , Tomografía Computarizada por Rayos X , Zea mays/metabolismo
16.
PeerJ ; 8: e9870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995083

RESUMEN

BACKGROUND: To promote straw degradation, we inoculated returned farmland straw with earthworms (Pheretima guillelmi). Increasing the number of earthworms may generally alter soil organic carbon (SOC) dynamics and the biological activity of agricultural soils. METHODS: We performed soil mesocosm experiments with and without earthworms to assess the decomposition and microbial mineralization of returned straw and soil enzyme activity across different time periods. RESULTS: When earthworms were present in soil, the surface residues were completely consumed during the first four weeks, but when earthworms were absent, most of the residues remained on the soil surface after 18 weeks. On day 28, the SOC content was significantly higher in the treatment where both earthworms and residue had been added. The SOC content was lower in the treatment where earthworms but no residue had been added. The organic carbon content in water-stable macroaggregates showed the same trend. During the first 14 weeks, the soil basal respiration was highest in the treatments with both residues and earthworms. From weeks 14 to 18, basal respiration was highest in the treatments with residues but without earthworms. We found a significant positive correlation between soil basal respiration and soil dissolved organic carbon content. Earthworms increased the activity of protease, invertase, urease and alkaline phosphatase enzymes, but decreased ß-cellobiohydrolase, ß-glucosidase and xylosidase activity, as well as significantly reducing ergosterol content. CONCLUSION: The primary decomposition of exogenous rice residues was mainly performed by earthworms. Over a short period of time, they converted plant carbon into soil carbon and increased SOC. The earthworms played a key role in carbon conversion and stabilization. In the absence of exogenous residues, earthworm activity accelerated the decomposition of original organic carbon in the soil, reduced SOC, and promoted carbon mineralization.

17.
ACS Omega ; 5(31): 19469-19477, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803041

RESUMEN

Fluorescence sensing of oxalate has garnered some attention in the past two decades as a result of this anion's prominence and impact on society. Previous work on oxalate sensors and other divalent anion sensors has led to the conclusion that the sensors are selective for the anion under investigation. However, sensor selectivity is often determined by testing against a relatively small array of "guest" molecules or analytes and studies often exclude potentially interfering compounds. For example, studies on oxalate sensors have excluded compounds such as citrate and urate, which are anions in the biological matrices where oxalate is measured (e.g., urine, blood, and bacterial lysate). In the present study, we reassessed the selectivity of a dinuclear copper(II) macrocycle (Cu2L) in an eosin Y displacement assay using biologically relevant anions. Although previously reported as selective for oxalate, we found greater indicator displacement (fluorescence response) for urate and oxaloacetate and a significant response to citrate. These anions are larger than oxalate and do not appear to fit into the putative binding pocket of Cu2L. Consistent with previous reports, Cu2L did not release eosin Y in the presence of several other dicarboxylates, including adipate, glutarate, malate (except at 10 mM), fumarate, succinate, or malonate (except at 10 mM), and the monocarboxylate acetate. This was demonstrated by the failure of the anions to reverse eosin Y quenching by Cu2L. We also assessed, for the first time, other monocarboxylates, including butyrate, pyruvate, lactate, propionate, and formate. None of these anions were able to displace eosin Y, indicating no interaction with Cu2L that interfered with the eosin Y binding site. Single-crystal X-ray crystallography revealed that nonselective binding of the anions is likely partly caused by readily accessible copper(II) ions on the external surface of Cu2L. In addition, π-π stacking of urate with the aromatic groups of Cu2L cannot be ruled out as a contributor to binding. We conclude that Cu2L is not suitable for oxalate sensing in a biological matrix unless interfering compounds are selectively removed or masked.

18.
Plant Cell ; 32(7): 2196-2215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371543

RESUMEN

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants, and PHYTOCHROME-INTERACTING FACTORS (PIFs) are a group of basic helix-loop-helix family transcription factors that play central roles in repressing photomorphogenesis. Here, we report that MYB30, an R2R3-MYB family transcription factor, acts as a negative regulator of photomorphogenesis in Arabidopsis (Arabidopsis thaliana). We show that MYB30 preferentially interacts with the Pfr (active) forms of the phytochrome A (phyA) and phytochrome B (phyB) holoproteins and that MYB30 levels are induced by phyA and phyB in the light. It was previously shown that phytochromes induce rapid phosphorylation and degradation of PIFs upon R light exposure. Our current data indicate that MYB30 promotes PIF4 and PIF5 protein reaccumulation under prolonged R light irradiation by directly binding to their promoters to induce their expression and by inhibiting the interaction of PIF4 and PIF5 with the Pfr form of phyB. In addition, our data indicate that MYB30 interacts with PIFs and that they act additively to repress photomorphogenesis. In summary, our study demonstrates that MYB30 negatively regulates Arabidopsis photomorphogenic development by acting to promote PIF4 and PIF5 protein accumulation under prolonged R light irradiation, thus providing new insights into the complicated but delicate control of PIFs in the responses of plants to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Plantones/fisiología , Factores de Transcripción/genética
19.
EMBO J ; 39(13): e103630, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449547

RESUMEN

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Temperatura , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocótilo/genética , Transactivadores/genética
20.
Nat Commun ; 11(1): 1592, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221308

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5), a basic domain/leucine zipper (bZIP) transcription factor, acts as a master regulator of transcription to promote photomorphogenesis. At present, it's unclear whether HY5 uses additional mechanisms to inhibit hypocotyl elongation. Here, we demonstrate that HY5 enhances the activity of GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2), a key repressor of brassinosteroid signaling, to repress hypocotyl elongation. We show that HY5 physically interacts with and genetically acts through BIN2 to inhibit hypocotyl elongation. The interaction of HY5 with BIN2 enhances its kinase activity possibly by the promotion of BIN2 Tyr200 autophosphorylation, and subsequently represses the accumulation of the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1). Leu137 of HY5 is found to be important for the HY5-BIN2 interaction and HY5-mediated regulation of BIN2 activity, without affecting the transcriptional activity of HY5. HY5 levels increase with light intensity, which gradually enhances BIN2 activity. Thus, our work reveals an additional way in which HY5 promotes photomorphogenesis, and provides an insight into the regulation of GSK3 activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Hipocótilo/metabolismo , Luz , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3 , Fosforilación , Proteínas Quinasas/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...