Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenomics ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587919

RESUMEN

Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.

2.
Sci Adv ; 9(44): eadh3642, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922361

RESUMEN

Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , ADN Viral/genética , Cromatina/genética , Integración Viral , Infecciones por VIH/genética , Inmunidad Innata
3.
Environ Health Perspect ; 131(6): 67007, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37307168

RESUMEN

BACKGROUND: Osteoclasts are major actors in the maintenance of bone homeostasis. The full functional maturation of osteoclasts from monocyte lineage cells is essential for the degradation of old/damaged bone matrix. Diuron is one of the most frequently encountered herbicides, particularly in water sources. However, despite a reported delayed ossification in vivo, its impact on bone cells remains largely unknown. OBJECTIVES: The objectives of this study were to first better characterize osteoclastogenesis by identifying genes that drive the differentiation of CD14+ monocyte progenitors into osteoclasts and to evaluate the toxicity of diuron on osteoblastic and osteoclastic differentiation in vitro. METHODS: We performed chromatin immunoprecipitation (ChIP) against H3K27ac followed by ChIP-sequencing (ChIP-Seq) and RNA-sequencing (RNA-Seq) at different stages of differentiation of CD14+ monocytes into active osteoclasts. Differentially activated super-enhancers and their potential target genes were identified. Then to evaluate the toxicity of diuron on osteoblasts and osteoclasts, we performed RNA-Seq and functional tests during in vitro osteoblastic and osteoclastic differentiation by exposing cells to different concentrations of diuron. RESULTS: The combinatorial study of the epigenetic and transcriptional remodeling taking place during differentiation has revealed a very dynamic epigenetic profile that supports the expression of genes vital for osteoclast differentiation and function. In total, we identified 122 genes induced by dynamic super-enhancers at late days. Our data suggest that high concentration of diuron (50µM) affects viability of mesenchymal stem cells (MSCs) in vitro associated with a decrease of bone mineralization. At a lower concentration (1µM), an inhibitory effect was observed in vitro on the number of osteoclasts derived from CD14+ monocytes without affecting cell viability. Among the diuron-affected genes, our analysis suggests a significant enrichment of genes targeted by pro-differentiation super-enhancers, with an odds ratio of 5.12 (ρ=2.59×10-5). DISCUSSION: Exposure to high concentrations of diuron decreased the viability of MSCs and could therefore affect osteoblastic differentiation and bone mineralization. This pesticide also disrupted osteoclasts maturation by impairing the expression of cell-identity determining genes. Indeed, at sublethal concentrations, differences in the expression of these key genes were mild during the course of in vitro osteoclast differentiation. Taken together our results suggest that high exposure levels of diuron could have an effect on bone homeostasis. https://doi.org/10.1289/EHP11690.


Asunto(s)
Herbicidas , Osteogénesis , Humanos , Diurona , Secuencias Reguladoras de Ácidos Nucleicos , Diferenciación Celular
4.
Cancers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36497429

RESUMEN

TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.

5.
Front Oncol ; 11: 765711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765560

RESUMEN

BACKGROUND: The poor survival rate of patients with osteosarcoma (OS), specifically with metastases at diagnosis, undergoes the urgency to develop new therapeutic strategies. Although we recently demonstrated the key role of YAP/TEAD signaling in the growth of OS primary tumor, the molecular mechanisms by which YAP regulates metastases development remain poorly understood. METHODS: The molecular mechanisms by which YAP regulates metastases development were studied using an overexpression of mutated forms of YAP able or not able to interact with TEAD. Molecular signatures were identified using RNA-sequencing analysis and gene set enrichment. Interactions between YAP and Smad3 were studied using proximity ligation assay (PLA), immunoprecipitation, and promoter/specific gene assays. The involvement of the TGF-ß pathway in the ability of YAP to stimulate metastatic development in vivo was studied using an inhibitor of the TGF-ß cascade in a preclinical model of OS and in vitro on the ability of OS cells to migrate and invade. RESULTS: Our work shows that a high YAP expression is associated with the presence of lung metastases which predicts a poor prognosis. Molecular analysis indicates that TGF-ß signaling is involved in YAP-driven osteosarcoma cell pro-migratory phenotype, epithelial mesenchymal transition, cell migration, and in vivo lung metastasis development. Regardless of its ability to bind to TEAD, YAP interacts with Smad3 and stimulates the transcriptional activity of TGF-ß/Smad3, thereby enhancing the ability of TGF-ß to stimulate lung metastasis development. CONCLUSIONS: We demonstrated the crucial involvement of the TGF-ß/Smad3 signaling pathway in YAP-driven lung metastasis development in OS.

6.
Biochem Pharmacol ; 194: 114797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678225

RESUMEN

In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/enzimología , Sistemas de Liberación de Medicamentos/métodos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/enzimología , Proteasas Ubiquitina-Específicas/metabolismo , Antineoplásicos/administración & dosificación , Niño , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Ubiquitinación/efectos de los fármacos , Ubiquitinación/fisiología
7.
Cells ; 10(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34571917

RESUMEN

Osteosarcoma (OS) is the most common malignant bone tumor in children and teenagers. In many cases, such as poor response to treatment or the presence of metastases at diagnosis, the survival rate of patients remains very low. Although in the literature, more and more studies are emerging on the role of Ubiquitin-Specific Proteases (USPs) in the development of many cancers, few data exist regarding OS. In this context, RNA-sequencing analysis of OS cells and mesenchymal stem cells differentiated or not differentiated into osteoblasts reveals increased expression of four USPs in OS tumor cells: USP6, USP27x, USP41 and USP43. Tissue microarray analysis of patient biopsies demonstrates the nucleic and/or cytoplasmic expression of these four USPs at the protein level. Interestingly, Kaplan-Meyer analysis shows that the expression of two USPs, USP6 and USP41, is correlated with patient survival. In vivo experiments using a preclinical OS model, finally demonstrate that PR619, a USP inhibitor able to enhance protein ubiquitination in OS cell lines, reduces primary OS tumor growth and the development of lung metastases. In this context, in vitro experiments show that PR619 decreases the viability of OS cells, mainly by inducing a caspase3/7-dependent cell apoptosis. Overall, these results demonstrate the relevance of targeting USPs in OS.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Animales , Apoptosis , Neoplasias Óseas/enzimología , Neoplasias Óseas/patología , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/secundario , Ratones , Osteosarcoma/enzimología , Osteosarcoma/patología , Pronóstico , Células Tumorales Cultivadas , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cells ; 9(4)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230926

RESUMEN

The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.


Asunto(s)
Neoplasias Óseas/patología , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , MicroARNs/genética , Osteoblastos/patología , Osteosarcoma/genética , Osteosarcoma/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Óseas/genética , Humanos , MicroARNs/metabolismo , Osteoblastos/metabolismo
9.
Cancers (Basel) ; 12(12)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419295

RESUMEN

Although some studies suggested that disruption of the Hippo signaling pathway is associated with osteosarcoma progression, the molecular mechanisms by which YAP regulates primary tumor growth is not fully clarified. In addition, the validation of YAP as a therapeutic target through the use of inhibitors in a preclinical model must be demonstrated. RNA-seq analysis and Kaplan-Meier assays identified a YAP signature in osteosarcoma patients and a correlation with patients' outcomes. Molecular and cellular analysis (RNAseq, PLA, immunoprecipitation, promoter/specific gene, proliferation, cell cycle assays) using overexpression of mutated forms of YAP able or unable to interact with TEAD, indicate that TEAD is crucial for YAP-driven cell proliferation and in vivo tumor growth. In addition, in vivo experiments using an orthotopic mice model of osteosarcoma show that two YAP/TEAD inhibitors, verteporfin and CA3, reduce primary tumor growth. In this context, in vitro experiments demonstrate that these inhibitors decrease YAP expression, YAP/TEAD transcriptional activity and cell viability mainly by their ability to induce cell apoptosis. We thus demonstrate that the YAP/TEAD signaling axis is a central actor in mediating primary tumor growth of osteosarcoma, and that the use of YAP inhibitors may be a promising therapeutic strategy against osteosarcoma tumor growth.

10.
Epigenomics ; 12(2): 127-144, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31849242

RESUMEN

Throughout life, bones are subjected to the so-called 'bone-remodeling' process, which is a balanced mechanism between the apposition and the resorption of bone. This remodeling process depends on the activities of bone-specialized cells, namely the osteoblasts and the osteoclasts. Any deregulation in this process results in bone-related pathologies, classified as either metabolic nonmalignant diseases (such as osteoporosis) or malignant primary bone sarcomas. As these pathologies are not characterized by common targetable genetic alterations, epigenetic strategies could be relevant and promising options. Recently, targeting epigenetic regulators such as the bromodomains and extraterminal domains (BET) readers have achieved success in numerous other pathologies, including cancers. In this review, we highlight the current state of the art in terms of the diverse implications of BET bromodomain proteins in the bone's biology and its defects. Consequently, their role in bone-related pathologies will also be developed, especially in the context of the primary bone sarcomas.


Asunto(s)
Neoplasias Óseas/genética , Dominios Proteicos , Proteínas/fisiología , Acetilación , Neoplasias Óseas/metabolismo , Neoplasias Óseas/terapia , Epigénesis Genética , Histonas/metabolismo , Humanos , Osteoporosis/tratamiento farmacológico , Osteosarcoma/genética , Procesamiento Proteico-Postraduccional , Proteínas/antagonistas & inhibidores , Proteínas/química , Proteínas/metabolismo , Sarcoma de Ewing/genética
11.
Am J Hum Genet ; 105(5): 1040-1047, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630789

RESUMEN

Variants in genes encoding ribosomal proteins have thus far been associated with Diamond-Blackfan anemia, a rare inherited bone marrow failure, and isolated congenital asplenia. Here, we report one de novo missense variant and three de novo splice variants in RPL13, which encodes ribosomal protein RPL13 (also called eL13), in four unrelated individuals with a rare bone dysplasia causing severe short stature. The three splice variants (c.477+1G>T, c.477+1G>A, and c.477+2 T>C) result in partial intron retention, which leads to an 18-amino acid insertion. In contrast to observations from Diamond-Blackfan anemia, we detected no evidence of significant pre-rRNA processing disturbance in cells derived from two affected individuals. Consistently, we showed that the insertion-containing protein is stably expressed and incorporated into 60S subunits similar to the wild-type protein. Erythroid proliferation in culture and ribosome profile on sucrose gradient are modified, suggesting a change in translation dynamics. We also provide evidence that RPL13 is present at high levels in chondrocytes and osteoblasts in mouse growth plates. Taken together, we show that the identified RPL13 variants cause a human ribosomopathy defined by a rare skeletal dysplasia, and we highlight the role of this ribosomal protein in bone development.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Enanismo/genética , Mutación Missense/genética , Proteínas de Neoplasias/genética , Proteínas Ribosómicas/genética , Anemia de Diamond-Blackfan/genética , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Sci Rep ; 9(1): 479, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679741

RESUMEN

Ni-based catalysts have been considered as an efficient anode material for urea fuel cells due to the low cost and high activity in alkaline media. Herein, we demonstrate that Ni-Co bimetallic nanoparticles decorated carbon nanotube aerogels as catalysts for urea oxidation reaction (UOR) can be synthesized by a polyol reduction and sol-gel method. The morphology, structure, and composition of the Ni-Co/MWCNT aerogels were characterized by scanning electron microscopy and X-Ray diffraction. The electro-catalytic activity of the Ni-Co/MWCNT aerogels towards UOR was investigated using cyclic voltammetry. It was found that the Co-doping at 25% (Co/Ni) significantly increased the oxidation peak current and reduced the overpotential of the UOR. Furthermore, the MWCNT aerogel support also remarkably enhanced electro-catalytic activity by providing a high surface area and fast mass transport for the UOR owing to the porous 3D network structures with uniform distribution of Ni-Co nanoparticles. Urea/O2 fuel cell with Ni-Co/MWCNT aerogel as anode material exhibited an excellent performance with maximum power density of 17.5 mWcm-2 with an open circuit voltage of 0.9 V. Thus, this work showed that the highly porous three-dimensional Ni-Co/MWCNT aerogel catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA