Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neuroimage ; 44(1): 182-9, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18801443

RESUMEN

One of the most consistent electrophysiological deficits reported in the schizophrenia literature is the failure to inhibit, or properly gate, the neuronal response to the second stimulus of an identical pair (i.e., sensory gating). Although animal and invasive human studies have consistently implicated the auditory cortex, prefrontal cortex and hippocampus in mediating the sensory gating response, localized activation in these structures has not always been reported during non-invasive imaging modalities. In the current experiment, event-related FMRI and a variant of the traditional gating paradigm were utilized to examine how the gating network differentially responded to the processing of pairs of identical and non-identical tones. Two single-tone conditions were also presented so that they could be used to estimate the HRF for paired stimuli, reconstructed based on actual hemodynamic responses, to serve as a control non-gating condition. Results supported an emerging theory that the gating response for both paired-tone conditions was primarily mediated by auditory and prefrontal cortex, with potential contributions from the thalamus. Results also indicated that the left auditory cortex may play a preferential role in determining the stimuli that should be inhibited (gated) or receive further processing due to novelty of information. In contrast, there was no evidence of hippocampal involvement, suggesting that future work is needed to determine what role it may play in the gating response.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Encéfalo/fisiología , Red Nerviosa/fisiología , Filtrado Sensorial/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino
3.
J Neurosci ; 21(12): 4523-9, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11404440

RESUMEN

Serotonin modulates afferent synaptic transmission to the lateral giant neurons of crayfish, which are command neurons for escape behavior. Low concentrations, or high concentrations reached gradually, are facilitatory, whereas high concentrations reached rapidly are inhibitory. The modulatory effects rapidly reverse after brief periods of application, whereas longer periods of application are followed by facilitation that persists for hours. These effects of serotonin can be reproduced by models that involve multiple interacting intracellular signaling systems that are each stimulated by serotonin. The dependence of the neuromodulatory effect on dose, rate, and duration of modulator application may be relevant to understanding the effects of natural neuromodulation on behavior and cognition and to the design of drug therapies.


Asunto(s)
Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Serotonina/administración & dosificación , Animales , Astacoidea , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Esquema de Medicación , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios de Invertebrados/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Umbral Sensorial/fisiología , Serotonina/metabolismo , Procesamiento de Señales Asistido por Computador , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Aislamiento Social
4.
Proc Natl Acad Sci U S A ; 92(8): 3362-6, 1995 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-7724567

RESUMEN

Learning is widely thought to result from altered potency of synapses within the neural pathways that mediate the learned behavior. Support for this belief, which pervades current physiological and computational thinking, comes especially from the analysis of cases of simple learning in invertebrates. Here, evidence is presented that in one such case, habituation of crayfish escape, the learning is more due to onset of tonic descending inhibition than to the intrinsic depression of circuit synapses to which it was previously attributed. Thus, the altered performance seems to depend at least as much on events in higher centers as on local plasticity.


Asunto(s)
Astacoidea/fisiología , Reacción de Fuga/fisiología , Habituación Psicofisiológica/fisiología , Actividad Nerviosa Superior/fisiología , Inhibición Neural/fisiología , Animales , Astacoidea/efectos de los fármacos , Modelos Neurológicos , Fenómenos Fisiológicos del Sistema Nervioso , Procedimientos Neuroquirúrgicos , Picrotoxina/farmacología , Reflejo/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...