Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38317623

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Signal Transduction , Receptor for Advanced Glycation End Products/chemistry , Receptor for Advanced Glycation End Products/metabolism
2.
Radiat Prot Dosimetry ; 199(14): 1551-1556, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37721067

When using biodosimetry techniques to assess absorbed dose from an ionising radiation exposure, a calibration curve is required. At Health Canada (HC), these curves are generated for a variety of radiation qualities and assays to translate biological damage into absorbed dose. They are produced by irradiating biological samples in custom-designed water-equivalent phantoms inside a cabinet X-ray machine. In the HC lab, two different phantoms can be used for irradiation that differs in material composition and internal geometry. To ensure consistency, the impact of using the phantoms interchangeably was investigated. This was done through lab measurements and the development of a Monte Carlo (MC) model. Differences up to 6.7% were found between the two experimental setups, indicating the need for careful consideration if using these setups interchangeably in the laboratory. Once validated, the MC model can be used to investigate different aspects of the experimental setup without the need for laboratory measurements.


Biological Assay , Laboratories , Calibration , Canada , Data Collection
3.
Foods ; 11(12)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35741873

The world is currently undergoing a demographic change towards an increasing number of elderly citizens. Aging is characterized by a temporal decline in physiological capacity, and oxidative stress is a hallmark of aging and age-related disorders. Such an oxidative state is linked to a decrease in the effective mechanisms of cellular repair, the incidence of post-translational protein glycation, mitochondrial dysfunction, and neurodegeneration, just to name some of the markers contributing to the establishment of age-related reduction-oxidation, or redox, imbalance. Currently, there are no prescribed therapies to control oxidative stress; however, there are strategies to elevate antioxidant defenses and overcome related health challenges based on the adoption of nutritional therapies. It is well known that herbal teas such, as hibiscus, rooibos, and yerba mate, are important sources of antioxidants, able to prevent some oxidation-related stresses. These plants produce several bioactive metabolites, have a pleasant taste, and a long-lasting history as safe foods. This paper reviews the literature on hibiscus, rooibos, and yerba mate teas in the context of nutritional strategies for the attenuation of oxidative stress-related glycoxidation and neurodegeneration, and, here, Alzheimer's Disease is approached as an example. The focus is given to mechanisms of glycation inhibition, as well as neuroprotective in vitro effects, and, in animal studies, to frame interest in these plants as nutraceutical agents related to current health concerns.

4.
Nutrients ; 14(9)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35565855

N-carboxymethyl-lysine (CML) and other dietary advanced glycation end-products (AGEs) are chemically modified amino acids with potential toxicological effects putatively related to their affinity with the receptor for AGEs (RAGE). The goal of this study was to determine the postprandial kinetics of CML in both rodents and humans and, in the latter, to evaluate their relationship with the soluble RAGE isoforms (sRAGE). Four gavage solutions containing different forms of CML were given to rats, and blood was collected over 8 h. Three different breakfasts containing dietary CML (dCML) were administered to 20 healthy volunteers, and blood was collected over 2 h. Concentrations of CML, CEL, and lysine were quantified in plasma and human meals by LC-MS/MS, and sRAGE was determined in human plasma by ELISA. The results showed that dCML did not affect the concentrations of circulating protein-bound CML and that only free CML increased in plasma, with a postprandial peak at 90 to 120 min. In humans, the postprandial plasmatic sRAGE concentration decreased independently of the dAGE content of the breakfasts. This study confirms reports of the inverse postprandial relationship between plasmatic free CML and sRAGE, though this requires further investigation for causality to be established.


Glycation End Products, Advanced , Lysine , Animals , Biomarkers , Breakfast , Chromatography, Liquid , Glycation End Products, Advanced/metabolism , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Rats , Receptor for Advanced Glycation End Products/metabolism , Tandem Mass Spectrometry
5.
Phys Med ; 94: 17-23, 2022 Feb.
Article En | MEDLINE | ID: mdl-34972070

PURPOSE: Although several studies provide data for reference dosimetry, the SNC600c and SNC125c ionization chambers (Sun Nuclear Corporation, Melbourne, FL) are in clinical use worldwide for which no beam quality correction factors kQ are available. The goal of this study was to calculate beam quality correction factors kQ for these ionization chambers according to dosimetry protocols TG-51, TRS 398 and DIN 6800-2. METHODS: Monte Carlo simulations using EGSnrc have been performed to calculate the absorbed dose to water and the dose to air within the active volume of ionization chamber models. Both spectra and simulations of beam transport through linear accelerator head models were used as radiation sources for the Monte Carlo calculations. RESULTS: kQ values as a function of the respective beam quality specifier Q were fitted against recommended equations for photon beam dosimetry in the range of 4 MV to 25 MV. The fitting curves through the calculated values showed a root mean square deviation between 0.0010 and 0.0017. CONCLUSIONS: The investigated ionization chamber models (SNC600c, SNC125c) are not included in above mentioned dosimetry protocols, but are in clinical use worldwide. This study covered this knowledge gap and compared the calculated results with published kQ values for similar ionization chambers. Agreements with published data were observed in the 95% confidence interval, confirming the use of data for similar ionization chambers, when there are no kQ values available for a given ionization chamber.


Particle Accelerators , Radiometry , Monte Carlo Method , Photons , Relative Biological Effectiveness , Water
6.
Clin Nutr ; 41(1): 1-8, 2022 01.
Article En | MEDLINE | ID: mdl-34861623

BACKGROUND & AIMS: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns. METHODS: We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C). RESULTS: Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk. CONCLUSIONS: Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.


Food Handling/methods , Glycation End Products, Advanced/chemical synthesis , Hydrostatic Pressure , Milk, Human/chemistry , Oligosaccharides/chemistry , Chromatography, Liquid , Humans , Tandem Mass Spectrometry
7.
Crit Rev Clin Lab Sci ; 59(2): 125-141, 2022 03.
Article En | MEDLINE | ID: mdl-34726550

Diagnostic, monitoring, response, predictive, risk, and prognostic biomarkers of disease are all widely studied, for the most part in biological fluids or tissues, but there is steadily growing interest in alternative matrices such as nails. Here we comprehensively review studies dealing with molecular or elemental biomarkers of disease, as opposed to semiological, pharmacological, toxicological, or biomonitoring studies. Nails have a long history of use in medicine as indicators of pathological processes and have also been used extensively as a matrix for monitoring exposure to environmental pollution. Nail clippings are simple to collect noninvasively as well as to transport and store, and the matrix itself is relatively stable. Nails incorporate, and are influenced by, circulating molecules and elements over their several months of growth, and it is widely held that markers of biological processes will remain in the nail, even when their levels in blood have declined. Nails thus offer the possibility to not only look back into a subject's metabolic history but also to study biomarkers of processes that operate over a longer time scale such as the post-translational modification of proteins. Reports on ungual biomarkers of metabolic and endocrine diseases, cancer, and psychological and neurological disorders will be presented, and an overview of the sampling and analytical techniques provided.


Nails , Biomarkers/metabolism , Humans , Nails/metabolism
8.
Nutrients ; 13(12)2021 Dec 08.
Article En | MEDLINE | ID: mdl-34959950

The impact of dietary advanced glycation end products (dAGEs) on human health has been discussed in many studies but, to date, no consensual pathophysiological process has been demonstrated. The intestinal absorption pathways which have so far been described for dAGEs, the passive diffusion of free AGE adducts and transport of glycated di-tripeptides by the peptide transporter 1 (PEPT-1), are not compatible with certain pathophysiological processes described. To get new insight into the intestinal absorption pathways and the pathophysiological mechanisms of dAGEs, we initiated an in vivo study with a so-called simple animal model with a complete digestive tract, Caenorhabditis elegans. Dietary bacteria were chemically modified with glyoxylic acid to mainly produce Nε-carboxymethyllysine (CML) and used to feed the worms. We performed different immunotechniques using an anti-CML antibody for the relative quantification of ingested CML and localization of this AGE in the worms' intestine. The relative expression of genes encoding different biological processes such as response to stresses and intestinal digestion were determined. The physiological development of the worms was verified. All the results were compared with those obtained with the control bacteria. The results revealed a new route for the intestinal absorption of dietary CML (dCML), endocytosis, which could be mediated by scavenger receptors. The exposure of worms to dCML induced a reproductive defect and a transcriptional response reflecting oxidative, carbonyl and protein folding stresses. These data, in particular the demonstration of endocytosis of dCML by enterocytes, open up new perspectives to better characterize the pathophysiological mechanisms of dAGEs.


Caenorhabditis elegans/metabolism , Endocytosis/drug effects , Glycation End Products, Advanced/adverse effects , Glycation End Products, Advanced/metabolism , Intestinal Absorption/drug effects , Lysine/analogs & derivatives , Animals , Enterocytes/metabolism , Gastrointestinal Tract/metabolism , Lysine/administration & dosage , Lysine/adverse effects , Models, Animal , Oxidative Stress/drug effects , Protein Folding/drug effects , Reproduction/drug effects
9.
Nutrients ; 13(9)2021 Sep 02.
Article En | MEDLINE | ID: mdl-34578967

Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.


Biomarkers/analysis , Diet/adverse effects , Energy Intake , Glycation End Products, Advanced/adverse effects , Inflammation/metabolism , Adipokines/analysis , Animals , Chronic Disease , Cytokines/analysis , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Humans , Inflammation/physiopathology , Mice
10.
Glycoconj J ; 38(3): 311-317, 2021 06.
Article En | MEDLINE | ID: mdl-32990827

The Maillard reaction, also called glycation, is one of the major chemical reactions responsible for most yellow-to-brown colors and aromas in cooked foods. This reaction between reducing sugars and amino functions on proteins affects not only the flavor of food, but also leads to the formation of an heterogenous group of structurally-modified amino acids. Some of these, known as "advanced glycation end products" (AGEs), have been found in both foods and human biological fluids, tissues and organs. Except for those that are formed over long periods in vivo at 37 °C, AGEs in the body originate from the digestion and absorption of dietary sources. A high or chronic exposure to dietary AGEs (dAGEs) is suspected as potentially detrimental to human health and studies in the field of food safety have begun to focus their attention on the metabolic transit of dAGEs. This review presents some important findings in this field, with a focus on NƐ-carboxymethyllysine, and presents the evidence for and against an association between intake of dAGEs and their presence in the body. New and promising avenues of research are described, and some future directions outlined.


Digestion/physiology , Glycation End Products, Advanced/metabolism , Lysine/analogs & derivatives , Amino Acids/chemistry , Amino Acids/metabolism , Diet , Humans , Lysine/metabolism
11.
Med Phys ; 48(4): 1996-2003, 2021 Apr.
Article En | MEDLINE | ID: mdl-33125734

PURPOSE: NRC Report PIRS-0626 (https://doi.org/10.4224/40000364) describes how measured electron energy deposition spectra can be used to determine the electronic stopping power. The stopping power is obtained by comparing measured spectra with spectra calculated using Monte Carlo techniques. The stopping powers reported in PIRS-0626 were obtained using the EGS4 Monte Carlo code. Since then, the EGSnrc code has been released which has more accurate electron transport algorithms. We calculate the effect on the measured stopping powers of using EGSnrc instead of EGS4. METHOD: The EGS4 spectra calculated in PIRS-0626 were based on 4 × 10 5 primary electron histories. We first show that those spectra, calculated in 1997, are consistent with current EGS4 spectra calculated using 10 8 histories. EGSnrc spectra are also calculated using 10 8 histories and these high-precision spectra are compared to extract any energy difference. The energy differences between the spectra are used to estimate the effect on the measured electronic stopping powers. RESULTS: The energy differences depend on the absorber material, the absorber thickness and the beam energy. The improved electron elastic scattering cross section of EGSnrc accounts for only part of the difference between the two codes. The effect on the extracted stopping power is largest for the lowest electron energies and can be as large as 0.9%. The calculated spectra show differences for lower energies, with the EGSnrc spectra having a larger proportion of low-energy electrons. CONCLUSION: The differences introduced by using EGSnrc instead of EGS4 can affect the estimated stopping power by almost 1% in the worst case but generally the effect is much smaller. We report corrections that can be applied to all the stopping power data in PIRS-0626. An experiment to measure the average energy to create an ion pair in air, W air , using aluminum detectors will provide an interesting test of the aluminum stopping power data as reported in PIRS-0626 and revised by this work.


Electrons , Radiometry , Algorithms , Electron Transport , Monte Carlo Method
12.
Appl Physiol Nutr Metab ; 45(10): 1107-1117, 2020 Oct.
Article En | MEDLINE | ID: mdl-32289236

Accumulation of advanced glycation end products (AGEs) and activation of the receptor for AGEs (RAGE) are implicated in the progression of pathologies associated with aging, chronic inflammation, diabetes, and cellular stress. RAGE activation is also implicated in cardiovascular complications of type 2 diabetes, such as nephropathy, retinopathy, accelerated vascular diseases, and cardiomyopathy. Studies investigating the effects of AGE/RAGE axis activation on skeletal muscle oxidative stress and metabolism are more limited. We tested whether a high-fat diet (HFD) would alter circulating AGE concentration, skeletal muscle AGE accumulation, and oxidative stress in wild-type and RAGE-deficient mice. The physiological significance of AGE/RAGE axis activation in HFD-fed mice was evaluated in terms of exercise tolerance and mitochondrial respiratory chain complex activity. HFD elicited adiposity, abnormal fat distribution, and oral glucose intolerance. HFD also induced accumulation of Nε-carboxymethyl-l-lysine, increased protein carbonyl levels, and impaired respiratory chain complex activity in soleus muscle. Ablation of RAGE had no effects on weight gain and oral glucose tolerance in HFD-fed mice. Peak aerobic capacity and mitochondrial cytochrome-c oxidase activity were restored in HFD-fed RAGE-/- mice. We concluded that RAGE signaling plays an important role in skeletal muscle homeostasis of mice under metabolic stress. Novelty HFD in mice induces accumulation of AGEs, oxidative stress, and mitochondrial dysfunction in the soleus muscle. RAGE, the multi-ligand receptor for AGEs, modulates oxidative stress and mitochondrial electron transport chain function in the soleus muscle of HFD-fed mice.


Diet, High-Fat , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress/physiology , Receptor for Advanced Glycation End Products/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
13.
Am J Physiol Renal Physiol ; 318(4): F1030-F1040, 2020 04 01.
Article En | MEDLINE | ID: mdl-32150446

Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.


Diabetic Nephropathies/enzymology , Dipeptidases/biosynthesis , Exercise Therapy , Kidney Glomerulus/enzymology , Muscle, Skeletal/enzymology , Obesity/enzymology , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Dipeptidases/genetics , Dipeptides/metabolism , Disease Models, Animal , Enzyme Induction , Histidine/analogs & derivatives , Histidine/metabolism , Humans , Kidney Glomerulus/pathology , Mice, Transgenic , Muscle, Skeletal/pathology , Obesity/complications , Obesity/genetics , Obesity/pathology , Time Factors
14.
Heliyon ; 6(2): e03312, 2020 Feb.
Article En | MEDLINE | ID: mdl-32072041

The aim of this work was to determine the effect of temperature on the formation of acrylamide in cocoa beans during drying treatment by an experimental and computational study, in order to assess the presence of this neoformed compound from postharvest stage. The computational study was conducted on the reaction between fructose, glyoxal from glucose, and on asparagine at the M06-2X/6-31+G(d,p) level, under cocoa bean drying conditions at 323.15 to 343.15 K. The proposed reaction for acrylamide formation consisted of seven steps, which required to progress a via cyclic transition state of the four members. In addition, step III (decarboxylation) was considered to be the rate-determining step. Glucose followed an E1-like elimination and fructose exhibited an E1cb-like elimination. Computational model showed that the reaction of acrylamide formation was favored by fructose rather than glucose. The content of reducing sugars, asparagine and acrylamide in fermented and dried cocoa from two subregions of Antioquia-Colombia, as well as roasted cocoa, were evaluated by UHPLC-C-CAD and UHPLC-QqQ. The concentrations of monosaccharides measured at the end of the fermentation and drying process of cocoa nibs showed greater decreases in the levels of fructose as compared to glucose, supporting the main model hypothesis. Acrylamide formation only occurred in Bajo Cauca due to the presence of both precursors and fast drying time (72 h). Finally, it was possible to find the conditions to which acrylamide can be formed from the drying process and not only from roasting, information that can be used for future control strategies.

15.
Mol Nutr Food Res ; 64(6): e1901018, 2020 03.
Article En | MEDLINE | ID: mdl-31991062

SCOPE: Type 2 diabetes (T2D) induces organ damage associated with glycation, among other metabolic pathways. While therapeutic strategies have been tested to reduce the formation and impact of glycation products, results remain equivocal. Anti-diabetic therapies using probiotics have been proposed, but their effect upon glycation has not been reported. Here, the effects of the bacterial strain Lactobacillus fermentum ME-3 on glycation and T2D-related complications in a mouse model of T2D are investigated. METHODS & RESULTS: Wild-type LepRdb/+ and diabetic LepRdb/db littermates receive a daily gavage of either water or the probiotic ME-3 strain (1010 CFU). Glycation markers, fructoselysine-derived furosine (FL-furosine) and carboxymethyllysine (CML), are quantified in four major organs and plasma using stable-isotope dilution LC-MS/MS. After 12 weeks of ME-3 treatment, diabetic mice gain less weight and exhibit an apparently improved glucose tolerance. The ME-3 treatment reduces median renal levels of FL-furosine in both genotypes by 12-15%, and renal and pulmonary free-CML in diabetic mice by 30% and 18%, respectively. Attenuated hepatic steatosis and an improved plasma lipid profile are also observed with treatment in both genotypes, while the gut microbiota profile is unchanged. CONCLUSION: L. fermentum ME-3 has therapeutic potential for reducing the formation/accumulation of some glycation products in kidneys and attenuating some common diabetes-related complications.


Diabetes Complications/diet therapy , Glycation End Products, Advanced/metabolism , Limosilactobacillus fermentum , Probiotics/pharmacology , Animals , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/diet therapy , Gastrointestinal Microbiome/physiology , Glycated Hemoglobin/analysis , Kidney/metabolism , Lipids/blood , Liver/metabolism , Liver/physiology , Lysine/analogs & derivatives , Lysine/metabolism , Male , Receptors, Leptin/genetics , Weight Gain/drug effects
16.
Sci Rep ; 9(1): 18291, 2019 12 04.
Article En | MEDLINE | ID: mdl-31797985

Tissue aging is a complex phenomenon involving molecular aging of matrix proteins, which mainly results from their progressive alteration by nonenzymatic post-translational modifications (NEPTMs) such as glycation and carbamylation. These two reactions, which correspond to the binding of reactive metabolites (i.e. reducing sugars and urea-derived cyanate, respectively) on amino groups of proteins, occur during aging and are amplified in various chronic diseases such as diabetes mellitus or chronic renal disease (CKD). Since these reactions target the same functional groups, they can reciprocally compete for protein modification. Determining which NEPTM is predominant in tissues is necessary to better understand their role in the development of long-term complications of chronic diseases. For that purpose, two different murine models were used for reproducing such a competitive context: a CKD-diabetic mice model and a cyanate-consuming mice model. The competition has been evaluated by quantifying glycation and carbamylation products by LC-MS/MS in skin and aorta total extracts as well as in skin type I collagen. The results showed that the simultaneous enhancement of glycation and carbamylation reactions resulted in a decrease of the formation of glycation products (especially Amadori products) whereas the concentrations of homocitrulline, a carbamylation product, remained similar. These results, which have been obtained in both tissues and in purified skin type I collagen, suggest that carbamylation takes precedence over glycation for the modification of tissue proteins, but only in pathological conditions favouring these two NEPTMs. While glycation has been considered for a long time the predominant NEPTM of matrix proteins, carbamylation seems to also play an important role in tissue aging. The existence of competition between these NEPTMs must be taken into account to better understand the consequences of molecular aging of matrix proteins in tissue aging.


Aging/metabolism , Collagen Type I/metabolism , Glycation End Products, Advanced/metabolism , Proteins/metabolism , Animals , Aorta/metabolism , Diabetes Mellitus, Experimental/metabolism , Glycosylation , Kidney Failure, Chronic/metabolism , Mice , Mice, Inbred C57BL , Protein Carbamylation , Skin/metabolism
17.
Aging Cell ; 18(2): e12850, 2019 04.
Article En | MEDLINE | ID: mdl-30794349

Pro-aging effects of endogenous advanced glycation end-products (AGEs) have been reported, and there is increasing interest in the pro-inflammatory and -fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill-defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML-enriched diet on renal aging. Two-month-old male, wild-type (WT) and RAGE-/- C57Bl/6 mice were fed a control or a CML-enriched diet (200 µg CML/gfood ) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE-/- mice, with a predominantly tubular localization. The CML-rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE-/- mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A-II (ApoA-II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA-II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE-/- mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE-/- mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE-/- mice, suggesting RAGE is an important receptor in so-called inflamm-aging.


Aging/metabolism , Kidney Diseases/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Kidney Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor for Advanced Glycation End Products/deficiency
18.
Diabetes Metab Res Rev ; 35(2): e3103, 2019 02.
Article En | MEDLINE | ID: mdl-30467969

BACKGROUND: Early (furosine) and advanced (carboxymethyllysine, CML) products of glycation (AGEs) have been reported as increased in plasma, tissues, and organs of diabetic people, indicating a direct link between glycation and type 2 diabetes (T2D). While murine models present some of the characteristics observed in diabetic humans, their pertinence as models of glycation, particularly for T2D, remains poorly described. The aim of this study was to characterize and compare glycation in several organs of two commonly studied murine models of T2D using stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS: Defining parameters of type 2 diabetes including body weight, fasting glycaemia, and glucose intolerance were measured in three different C57BL6 mouse models of T2D-the genetic LepRdb/db (db/db) model and two diet-induced obesity (DIO) models-and their respective controls. Furosine, free, and protein-bound CML were quantified in kidneys, lungs, heart, and liver by LC-MS/MS. RESULTS: The obesity, hyperglycaemia, and glucose intolerance in db/db mice was accompanied by an increase of furosine and protein-bound CML levels in all organs relative to controls. The DIO models took several months to become obese, exhibited less severe hyperglycaemia and glucose intolerance, while glycation products were not significantly different between these groups (with the exception of furosine in liver and CML in lungs). CONCLUSIONS: The db/db model better reflected the characteristics of human T2D compared with the DIO models and exhibited greater formation and accumulation of both furosine and protein-bound CML in all of the organs tested here.


Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Intolerance/metabolism , Glycation End Products, Advanced/metabolism , Receptors, Leptin/physiology , Animals , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Glucose Intolerance/physiopathology , Glycosylation , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains
19.
Br J Nutr ; 121(5): 496-507, 2019 Mar 14.
Article En | MEDLINE | ID: mdl-30526703

This study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten-wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.

20.
Front Microbiol ; 9: 2899, 2018.
Article En | MEDLINE | ID: mdl-30538693

Lactic acid bacteria (LAB) are representative members of multiple ecosystems on earth, displaying dynamic interactions within animal and plant kingdoms in respect with other microbes. This highly heterogeneous phylogenetic group has coevolved with plants, invertebrates, and vertebrates, establishing either mutualism, symbiosis, commensalism, or even parasitism-like behavior with their hosts. Depending on their location and environment conditions, LAB can be dominant or sometimes in minority within ecosystems. Whatever their origins and relative abundance in specific anatomic sites, LAB exhibit multifaceted ecological and functional properties. While some resident LAB permanently inhabit distinct animal mucosal cavities, others are provided by food and may transiently occupy the gastrointestinal tract. It is admitted that the overall gut microbiome has a deep impact on health and diseases. Here, we examined the presence and the physiological role of LAB in the healthy human and several animal microbiome. Moreover, we also highlighted some dysbiotic states and related consequences for health, considering both the resident and the so-called "transionts" microorganisms. Whether LAB-related health effects act collectively or follow a strain-specificity dogma is also addressed. Besides the highly suggested contribution of LAB to interplay with immune, metabolic, and even brain-axis regulation, the possible involvement of LAB in xenobiotic detoxification processes and metal equilibrium is also tackled. Recent technological developments such as functional metagenomics, metabolomics, high-content screening and design in vitro and in vivo experimental models now open new horizons for LAB as markers applied for disease diagnosis, susceptibility, and follow-up. Moreover, identification of general and more specific molecular mechanisms based on antioxidant, antimicrobial, anti-inflammatory, and detoxifying properties of LAB currently extends their selection and promising use, either as probiotics, in traditional and functional foods, for dedicated treatments and mostly for maintenance of normobiosis and homeostasis.

...