Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
Hum Genomics ; 18(1): 50, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778374

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Biomarkers , Friedreich Ataxia , MicroRNAs , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Friedreich Ataxia/blood , MicroRNAs/genetics , MicroRNAs/blood , Male , Biomarkers/blood , Prognosis , Female , Adult , RNA-Seq , Adolescent , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Child , Young Adult , Middle Aged , Child, Preschool , ROC Curve , Case-Control Studies
2.
Sci Rep ; 13(1): 17759, 2023 10 18.
Article En | MEDLINE | ID: mdl-37853094

Prion disease is a fatal neurodegenerative disorder characterized by accumulation of an abnormal prion protein (PrPSc) in the central nervous system. To identify PrPSc aggregates for diagnostic purposes, pathologists use immunohistochemical staining of prion protein antibodies on tissue samples. With digital pathology, artificial intelligence can now analyze stained slides. In this study, we developed an automated pipeline for the identification of PrPSc aggregates in tissue samples from the cerebellar and occipital cortex. To the best of our knowledge, this is the first framework to evaluate PrPSc deposition in digital images. We used two strategies: a deep learning segmentation approach using a vision transformer, and a machine learning classification approach with traditional classifiers. Our method was developed and tested on 64 whole slide images from 41 patients definitively diagnosed with prion disease. The results of our study demonstrated that our proposed framework can accurately classify WSIs from a blind test set. Moreover, it can quantify PrPSc distribution and localization throughout the brain. This could potentially be extended to evaluate protein expression in other neurodegenerative diseases like Alzheimer's and Parkinson's. Overall, our pipeline highlights the potential of AI-assisted pathology to provide valuable insights, leading to improved diagnostic accuracy and efficiency.


Prion Diseases , Prion Proteins , Humans , Prion Proteins/metabolism , Artificial Intelligence , Prion Diseases/diagnosis , Prion Diseases/pathology , Brain/metabolism , Machine Learning
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article En | MEDLINE | ID: mdl-37628866

Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.


Friedreich Ataxia , Interferon-gamma , Animals , Mice , Interferon-gamma/pharmacology , NF-E2-Related Factor 2/genetics , Antioxidants/pharmacology , Friedreich Ataxia/genetics , Hydrogen Peroxide , Superoxide Dismutase
4.
Sex Transm Dis ; 50(9): 603-606, 2023 09 01.
Article En | MEDLINE | ID: mdl-36728659

BACKGROUND: The COVID-19 pandemic-related health crisis has imposed measures aimed at reducing the overcrowding of health facilities, by developing telemedicine and by forcing many sexually transmitted infection (STI) clinics to book appointments by telephone. In this work, we evaluate the performance of the nursing telephone triage system, introduced in the major STI center in Northwest Italy, for the adequacy of clinical pathways for of symptomatic STI patients. METHODS: From January to March 2021, all symptomatic patients wishing to access the CeMuSS center first underwent nurse-led telephone triage. Symptoms suggestive of STIs were further classified into four syndromic presentations: cutaneous neoformations, genital and oral ulcers, anogenital discharge, and finally other dermatological manifestations. All other clinical pictures were properly managed and eventually referred to other centers and not considered in the analysis. During the following medical examinations, the concordance between presumptive syndromic diagnosis and confirmed clinical diagnosis were recorded. Cohen k test was used to assess concordance. RESULTS: According to the Cohen k test, a good concordance between telephone presumptive diagnoses and medical clinical assessment was found (73.79% with a k = 0.611), whereas only a scarcely acceptable concordance between expected and real waiting time was established (75.51%, k = 0.34). CONCLUSIONS: Concordance between nursing syndromic diagnosis and syndromic medically confirmed diagnosis is good from a clinical point of view but there is a limitation when considering a public health perspective. An optimal training of nurses may improve the method of telephone triage. For future ongoing emergencies, the implementation of telemedicine with accurate patient management systems is mandatory.


COVID-19 , Sexual Health , Sexually Transmitted Diseases , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Triage/methods , Pilot Projects , Pandemics , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , Telephone , Hospitals
5.
Front Neurosci ; 16: 814445, 2022.
Article En | MEDLINE | ID: mdl-35221903

Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.

6.
Hum Mol Genet ; 31(12): 2010-2022, 2022 06 22.
Article En | MEDLINE | ID: mdl-35015850

Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.


Adaptor Proteins, Signal Transducing , Friedreich Ataxia , MicroRNAs , Neuroblastoma , Adaptor Proteins, Signal Transducing/genetics , Friedreich Ataxia/pathology , Humans , MicroRNAs/blood , Myocytes, Cardiac/metabolism , Neuroblastoma/metabolism , RNA, Messenger/genetics
7.
Front Psychiatry ; 12: 632519, 2021.
Article En | MEDLINE | ID: mdl-33889098

Introduction and Aims: The increase in stress levels, social confinement, and addiction's physical consequences play an essential role in the proliferation of drug abuse. In this context, the Covid-19 pandemic produced remarkable effects on those individuals prone to addictions, especially to alcohol. Alcohol is linked to multiple dangerous conditions such as social issues, severe medical conditions, and road accidents. The determination of ethylglucuronide (EtG) in hair is frequently performed to test and monitor chronic excessive alcohol intake conditions, as it allows differentiation among low-risk/moderate drinkers, and excessive/chronic drinkers. Our study aimed to explore hair EtG levels in a controlled population to assess the impact of Covid-19 lockdown on alcohol intake along March-May 2020. Materials and Methods: EtG levels were measured in all hair samples collected in the months following April 2020 to evaluate the behaviors related to alcohol intake along with the time frame from March to May 2020. The measured concentration distributions for each month were compared with those reported in the same month during the previous 4 years (2016-2019). The dataset was built to highlight possible differences between genders, and the different categories of alcohol consumption, separately. Results: The samples collected from April to August 2020 (500 < N <1,100 per month) showed an increase in the percentage of subjects classified as abstinent/low-risk drinkers (from 60 up to 79%) and a decrease of subjects classified as moderate and chronic drinkers (-12 and -7%, respectively) when compared to the previous 4 years. A decrease in the overall mean value of EtG in the period April-June 2020 was observed, while the EtG levels of both June and July 2020 provided an increasing trend for chronic/excessive consumers (+27 and +19% for June and July 2020, respectively). A peculiar rise in the EtG levels of moderate and chronic/excessive female consumers was observed along April-June 2020, too. Discussion and Conclusions: Behavioral and social studies generally report a decrease in alcohol consumption during the Covid-19 lockdown. However, people already suffering from drug or alcohol addictions before Covid-19 pandemic seemingly enhance their harmful behavior. Our data from April to August 2020 are consistent with both suppositions. Our observations confirm once again the utility of EtG to investigate the patterns of alcohol consumption in the population.

8.
Article En | MEDLINE | ID: mdl-33106270

Four pre-exposure prophylaxis (PrEP) users with gastro-intestinal disorders (sleeve gastrectomy, terminal ileitis, celiac disease or chronic diarrhea) and receiving oral tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) were included. Despite a self-reported high adherence, trough plasma tenofovir concentrations (after a supervised intake) were significantly lower than those observed in PrEP recipients without gastrointestinal disorders [21 (±9.1) vs. 138 (±85) ng/mL]. PrEP users with gastrointestinal disorders may need increased TDF doses or alternative prophylactic measures.

9.
Front Neurosci ; 14: 872, 2020.
Article En | MEDLINE | ID: mdl-33162876

The identification of efficient markers of disease progression and response to possibly effective treatments is a key priority for slowly progressive, rare and neurodegenerative diseases, such as Friedreich's ataxia. Various imaging modalities have documented specific abnormalities in Friedreich's ataxia that could be tracked to provide useful indicators of efficacy in clinical trials. Advanced MRI imaging (diffusion tensor imaging, DTI; functional MRI, fMRI; and resting-state fMRI, rs-fMRI) and retinal imaging (optical coherence tomography, OCT) were tested longitudinally in a small group of Friedreich's ataxia patients participating in an open-label clinical trial testing the safety and the efficacy of 6-month treatment with interferon gamma. While the DTI indices documented the slow progression of fractional anisotropy loss, fMRI and rs-fMRI were significantly modified during and after treatment. The fMRI changes significantly correlated with the Scale for the Assessment and Rating of Ataxia, which is used to monitor clinical response. OCT documented the known thickness reduction of the retinal nerve fiber layer thickness, but there was no change over time. This pilot study provides indications for the potential utility of fMRI and rs-fMRI as ancillary measures in clinical trials for Friedreich's ataxia.

10.
Diagnostics (Basel) ; 10(8)2020 Aug 09.
Article En | MEDLINE | ID: mdl-32784826

(1) Background: The current outbreak of COVID-19 infection is an ongoing challenge and a major threat to public health that requires surveillance, prompt diagnosis, as well as research efforts to understand the viral pathogenesis. Despite this, to date, very few studies have been performed concerning autoptic specimens. Therefore, this study aimed: (i) to reiterate the importance of the autoptic examination, the only method able to precisely define the cause of death; (ii) to provide a complete post-mortem histological and immunohistochemical investigation pattern capable of diagnosing death from COVID-19 infection. (2) Methods: In this paper, the lung examination of two subjects who died from COVID-19 are discussed, comparing the obtained data with those of the control, a newborn who died from pneumonia in the same pandemic period. (3) Results: The results of the present study suggest that COVID-19 infection can cause different forms of acute respiratory distress syndrome (ARDS), due to diffuse alveolar damage and diffuse endothelial damage. Nevertheless, different patterns of cellular and cytokine expression are associated with anti-COVID-19 antibody positivity, compared to the control case. Moreover, in both case studies, it is interesting to note that COVID-19, ACE2 and FVIII positivity was detected in the same fields. (4) Conclusions: COVID-19 infection has been initially classified as exclusively interstitial pneumonia with varying degrees of severity. Subsequently, vascular biomarkers showed that it can also be considered a vascular disease. The data on Factor VIII discussed in this paper, although preliminary and limited in number, seem to suggest that the thrombogenicity of Sars-CoV2 infection might be linked to widespread endothelial damage. In this way, it would be very important to investigate the pro-coagulative substrate both in all subjects who died and in COVID-19 survivors. This is because it may be hypothesized that the different patterns with which the pathology is expressed could depend on different individual susceptibility to infection or a different personal genetic-clinical background. In light of these findings, it would be important to perform more post-mortem investigations in order to clarify all aspects of the vascular hypothesis in the COVID-19 infection.

11.
Pathologica ; 112(2): 64-77, 2020 06.
Article En | MEDLINE | ID: mdl-32324727
12.
Hum Mol Genet ; 29(3): 471-482, 2020 02 01.
Article En | MEDLINE | ID: mdl-31943004

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.


Adaptor Proteins, Signal Transducing/metabolism , Cardiomyopathy, Hypertrophic/pathology , Friedreich Ataxia/complications , Gene Expression Regulation , Heart Failure/pathology , Iron-Binding Proteins/metabolism , Myocytes, Cardiac/pathology , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Female , Heart Failure/etiology , Heart Failure/metabolism , Humans , Iron-Binding Proteins/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Young Adult , Frataxin
14.
Nucleic Acids Res ; 47(20): 10728-10743, 2019 11 18.
Article En | MEDLINE | ID: mdl-31584077

Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.


Friedreich Ataxia/genetics , Gene Expression Regulation , Iron-Binding Proteins/genetics , Models, Biological , RNA, Untranslated/metabolism , Aconitate Hydratase/metabolism , Cell Line , Fibroblasts/metabolism , Humans , Lymphocytes/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Frataxin
15.
Mov Disord ; 34(3): 323-334, 2019 03.
Article En | MEDLINE | ID: mdl-30624801

BACKGROUND: Friedreich's ataxia is an autosomal-recessive cerebellar ataxia caused by mutation of the frataxin gene, resulting in decreased frataxin expression, mitochondrial dysfunction, and oxidative stress. Currently, no treatment is available for Friedreich's ataxia patients. Given that levels of residual frataxin critically affect disease severity, the main goal of a specific therapy for Friedreich's ataxia is to increase frataxin levels. OBJECTIVES: With the aim to accelerate the development of a new therapy for Friedreich's ataxia, we took a drug repositioning approach to identify market-available drugs able to increase frataxin levels. METHODS: Using a cell-based reporter assay to monitor variation in frataxin amount, we performed a high-throughput screening of a library containing 853 U.S. Food and Drug Administration-approved drugs. RESULTS: Among the potentially interesting candidates isolated from the screening, we focused our attention on etravirine, an antiviral drug currently in use as an anti-human immunodeficiency virus therapy. Here, we show that etravirine can promote a significant increase in frataxin levels in cells derived from Friedreich's ataxia patients, by enhancing frataxin messenger RNA translation. Importantly, frataxin accumulation in treated patient cell lines is comparable to frataxin levels in unaffected carrier cells, suggesting that etravirine could be therapeutically relevant. Indeed, etravirine treatment restores the activity of the iron-sulphur cluster containing enzyme aconitase and confers resistance to oxidative stress in cells derived from Friedreich's ataxia patients. CONCLUSIONS: Considering its excellent safety profile along with its ability to increase frataxin levels and correct some of the disease-related defects, etravirine represents a promising candidate as a therapeutic for Friedreich's ataxia. © 2019 International Parkinson and Movement Disorder Society.


Friedreich Ataxia/drug therapy , Iron-Binding Proteins/metabolism , Pyridazines/therapeutic use , Cell Line , Drug Evaluation, Preclinical , Drug Repositioning , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Humans , Iron-Binding Proteins/genetics , Nitriles , Pyrimidines , Frataxin
16.
Acta Neuropathol Commun ; 7(1): 1, 2019 01 03.
Article En | MEDLINE | ID: mdl-30606247

Prion diseases are neurodegenerative disorders which are caused by an accumulation of the abnormal, misfolded prion protein known as scrapie prion protein (PrPSc). These disorders are unique as they occur as sporadic, genetic and acquired forms. Sporadic Creutzfeldt-Jakob Disease (CJD) is the most common human prion disease, accounting for approximately 85-90% of cases, whereas autosomal dominant genetic forms, due to mutations in the prion protein gene (PRNP), account for 10-15% of cases. Genetic forms show a striking variability in their clinical and neuropathological picture and can sometimes mimic other neurodegenerative diseases.We report a novel PRNP mutation (V189I) in four CJD patients from three unrelated pedigrees. In three patients, the clinical features were typical for CJD and the diagnosis was pathologically confirmed, while the fourth patient presented with a complex phenotype including rapidly progressive dementia, behavioral abnormalities, ataxia and extrapyramidal features, and the diagnosis was probable CJD by current criteria, on the basis of PrPSc detection in CSF by Real Time Quaking-Induced Conversion assay. In all the three patients with autopsy findings, the neuropathological analysis revealed diffuse synaptic type deposition of proteinase K-resistant prion protein (PrPres), and type 1 PrPres was identified in the brain by western blot analysis. So, the histopathological and biochemical profile associated with the V189I mutation was indistinguishable from the MM1/MV1 subtype of sporadic CJD.Our findings support a pathogenic role for the V189I PRNP variant, confirm the heterogeneity of the clinical phenotypes associated to PRNP mutations and highlight the importance of PrPSc detection assays as diagnostic tools to unveil prion diseases presenting with atypical phenotypes.


Brain/pathology , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/genetics , Aged , Aged, 80 and over , Female , Humans , Male , Mutation , Pedigree , Phenotype , PrPSc Proteins/genetics
17.
FEBS Open Bio ; 8(3): 390-405, 2018 03.
Article En | MEDLINE | ID: mdl-29511616

Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.

18.
Cell Rep ; 18(8): 2007-2017, 2017 02 21.
Article En | MEDLINE | ID: mdl-28228265

Friedreich ataxia (FRDA) is a severe genetic neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. To date, there is no therapy to treat this condition. The amount of residual frataxin critically affects the severity of the disease; thus, attempts to restore physiological frataxin levels are considered therapeutically relevant. Frataxin levels are controlled by the ubiquitin-proteasome system; therefore, inhibition of the frataxin E3 ligase may represent a strategy to achieve an increase in frataxin levels. Here, we report the identification of the RING E3 ligase RNF126 as the enzyme that specifically mediates frataxin ubiquitination and targets it for degradation. RNF126 interacts with frataxin and promotes its ubiquitination in a catalytic activity-dependent manner, both in vivo and in vitro. Most importantly, RNF126 depletion results in frataxin accumulation in cells derived from FRDA patients, highlighting the relevance of RNF126 as a new therapeutic target for Friedreich ataxia.


Friedreich Ataxia/metabolism , Iron-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Catalysis , Cell Line , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Frataxin
19.
Neurol Sci ; 37(3): 361-4, 2016 Mar.
Article En | MEDLINE | ID: mdl-26621361

Friedreich's ataxia is an autosomal recessive progressive degenerative disorder caused by deficiency of the protein frataxin. The most common genetic cause is a homozygotic expansion of GAA triplets within intron 1 of the frataxin gene leading to impaired transcription. Preclinical in vivo and in vitro studies have shown that interferon gamma (IFNγ) is able to up-regulate the expression of frataxin gene in multiple cell types. We designed a phase IIa clinical trial, the first in Italy, aimed at assessing both safety and tolerability of IFNγ in Friedreich's patients and ability to increase frataxin levels in peripheral blood mononuclear cells. Nine patients (6 female and 3 males aged 21-38 years) with genetically confirmed disease were given 3 subcutaneous escalating doses (100, 150 and 200 µg) of IFNγ (human recombinant interferon 1 b gamma, trade name IMUKIN(®)), over 4 weeks. The primary end-point was the assessment of the safety and tolerability of IFNγ by means of standard clinical and hematological criteria. The secondary end-point was the detection of changes of frataxin levels in peripheral blood mononuclear cells after each single escalating dose of the drug. IFNγ was generally well tolerated, the main adverse event was hyperthermia/fever. Although, increases in frataxin levels could be detected in a minority of patients, these changes were not significant. A large phase III multicenter, randomized clinical trial with IFNγ in Friedreich's ataxia patients is currently ongoing. This study is expected to conclusively address the clinical efficacy of IFNγ therapy in patients with Friedreich's ataxia.


Friedreich Ataxia/drug therapy , Interferon-gamma/therapeutic use , Neuroprotective Agents/therapeutic use , Adult , Blood Chemical Analysis , Drug Administration Schedule , Female , Friedreich Ataxia/blood , Humans , Interferon-gamma/adverse effects , Iron-Binding Proteins/blood , Italy , Male , Neuroprotective Agents/adverse effects , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Treatment Outcome , Young Adult , Frataxin
20.
Front Mol Neurosci ; 8: 66, 2015.
Article En | MEDLINE | ID: mdl-26635519

Reduced levels of frataxin, an essential mitochondrial protein involved in the regulation of iron-sulfur cluster biogenesis, are responsible for the recessive neurodegenerative Friedreich Ataxia (FRDA). Expansion of a GAA triplet in the first intron of the FRDA is essential for disease development which causes partial silencing of frataxin. In the vast majority of cases, patients are homozygotes for the expansion, but a small number of FRDA patients are heterozygotes for expansion and point mutations in the frataxin coding frame. In this study, we analyze the effects of a point mutation G137V. The patient P94-2, with a history of alcohol and drug abuse, showed a FRDA onset at the border between the classic and late onset phenotype. We applied a combination of biophysical and biochemical methods to characterize its effects on the structure, folding and activity of frataxin. Our study reveals no impairment of the structure or activity of the protein but a reduced folding stability. We suggest that the mutation causes misfolding of the native chain with consequent reduction of the protein concentration in the patient and discuss the possible mechanism of disease.

...