Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446349

RESUMEN

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Asunto(s)
Ácidos Indolacéticos , Quinurenina , Ácidos Indolacéticos/metabolismo , Quinurenina/metabolismo , Proteínas de Plantas/genética , Polen/genética , Polen/metabolismo , Desarrollo Embrionario
2.
Front Plant Sci ; 14: 1181039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389288

RESUMEN

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

3.
Plants (Basel) ; 12(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050168

RESUMEN

Somatic embryogenesis (SE) is a feasible in vitro regeneration system with biotechnological applications in breeding programs, although, in many forest species, SE is highly inefficient, mainly due to their recalcitrance. On the other hand, SE represents a valuable model system for studies on cell reprogramming, totipotency acquisition, and embryogenic development. The molecular mechanisms that govern the transition of plant somatic cells to embryogenic cells are largely unknown. There is increasing evidence that auxins mediate this transition and play a key role in somatic embryo development, although data on woody species are very limited. In this study, we analyzed the dynamics and possible role of endogenous auxin during SE in cork oak (Quercus suber L.). The auxin content was low in somatic cells before cell reprogramming, while it increased after induction of embryogenesis, as revealed by immunofluorescence assays. Cellular accumulation of endogenous auxin was also detected at the later stages of somatic embryo development. These changes in auxin levels correlated with the expression patterns of the auxin biosynthesis (QsTAR2) and signaling (QsARF5) genes, which were upregulated after SE induction. Treatments with the inhibitor of auxin biosynthesis, kynurenine, reduced the proliferation of proembryogenic masses and impaired further embryo development. QsTAR2 and QsARF5 were downregulated after kynurenine treatment. Our findings indicate a key role of endogenous auxin biosynthesis and signaling in SE induction and multiplication, as well as somatic embryo development of cork oak.

5.
Environ Monit Assess ; 195(1): 195, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512105

RESUMEN

Biomonitoring is a valuable tool for assessing the presence and effects of air pollutants such as heavy metals (HM); due to their toxicity and stability, these compounds can affect human health and the balance of ecosystems. To assess its potential as a sentinel organism of HM pollution, the wild plant Gnaphalium lavandulifolium was exposed to four sites in the metropolitan area of México Valley (MAMV): Altzomoni (ALT) Coyoacán (COY), Ecatepec (ECA), and Tlalnepantla (TLA) during 2, 4, and 8 weeks, between October and November 2019. Control plants remained under controlled conditions. The chemical analysis determined twelve HM (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in the leaves. Macroscopic damage to the leaves, later determined in semi-thin sections under light microscopy, lead to a finer analysis. Transmission electron microscope (TEM) showed major structural changes: chromatin condensation, protoplast shrinkage, cytoplasm vacuolization, cell wall thinning, decreased number and size of starch grains, and plastoglobules in chloroplasts. All these characteristics of stress-induced programed cell death (sPCD) were related to the significant increase of toxic HM in the leaves of the exposed plants compared to the control (p < 0.05). Immunohistochemistry revealed a significant amount of proteases with caspase 3-like activity in ECA and TLA samples during long exposure times. Ultrastructural changes and sPCD features detected confirmed the usefulness of G. lavandulifolium as a good biomonitor of HM contamination. They supported the possibility of considering subcellular changes as markers of abiotic stress conditions in plants.


Asunto(s)
Gnaphalium , Metales Pesados , Humanos , Monitoreo Biológico , Monitoreo del Ambiente , Ecosistema , México , Metales Pesados/toxicidad , Metales Pesados/análisis
6.
New Phytol ; 236(5): 1888-1907, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35872574

RESUMEN

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación de ADN/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Tylenchoidea/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo
8.
J Exp Bot ; 72(22): 7808-7825, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34338766

RESUMEN

Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3ß (GSK-3ß), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3ß inhibitors that could be extended to other species.


Asunto(s)
Reprogramación Celular , Glucógeno Sintasa Quinasa 3 , Animales , Desarrollo Embrionario , Bosques , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética
9.
Biology (Basel) ; 10(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34439998

RESUMEN

Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.

10.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281171

RESUMEN

Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.


Asunto(s)
Productos Agrícolas/genética , Estrés Fisiológico/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica de las Plantas , Patrón de Herencia , Fitomejoramiento/métodos
11.
J Plant Physiol ; 258-259: 153333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581559

RESUMEN

Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.


Asunto(s)
Capsicum/embriología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/embriología , Cigoto/crecimiento & desarrollo
12.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33057654

RESUMEN

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Asunto(s)
Muerte Celular Autofágica , Brassica napus/crecimiento & desarrollo , Caspasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/fisiología , Semillas/crecimiento & desarrollo , Brassica napus/fisiología , Regulación de la Expresión Génica de las Plantas , Semillas/fisiología , Estrés Fisiológico
13.
Methods Mol Biol ; 2149: 403-427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617948

RESUMEN

The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual protein level. Traditional immunolocalization using antibodies that recognize the glycosidic moiety of the protein cannot be used to elucidate individual proteins' distribution, function, or interactors. Indirect approaches are typically used to study these proteins, relying on reverse genetic analysis of null mutants or using a reporter fusion system. In the method presented here, we propose the use of RNA probes to assist in the localization of individual AGPs expression/mRNAs in tissues of Arabidopsis by fluorescent in situ hybridization, FISH. An extensive description of all aspects of this technique is provided, from RNA probe synthesis to the hybridization, trying to overcome the lack of specific antibodies for the protein core of AGPs.


Asunto(s)
Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mucoproteínas/análisis , Mucoproteínas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN/análisis , ADN/aislamiento & purificación , Indoles/química , Mucoproteínas/metabolismo , Óvulo Vegetal/citología , Óvulo Vegetal/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN/análisis , ARN/metabolismo , Sondas ARN/síntesis química , Sondas ARN/metabolismo
14.
Plants (Basel) ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708602

RESUMEN

Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.

15.
Front Plant Sci ; 10: 1200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611902

RESUMEN

Stress-induced microspore embryogenesis is a model in vitro system of cell reprogramming, totipotency acquisition, and embryo development. After induction, responsive microspores abandon their developmental program to follow an embryogenic pathway, leading to in vitro embryo formation. This process is widely used to produce doubled-haploid lines, essential players to create new materials in modern breeding programs, particularly in cereals, although its efficiency is still low in many crop species, because the regulating mechanisms are still elusive. Stress signaling and endogenous hormones, mainly auxin, have been proposed as determinant factors of microspore embryogenesis induction in some eudicot species; however, much less information is available in monocot plants. In this study, we have analyzed the dynamics and possible role of endogenous auxin during stress-induced microspore embryogenesis in the monocot Hordeum vulgare, barley. The results showed auxin accumulation in early proembryo cells, from embryogenesis initiation and a further increase with embryo development and differentiation, correlating with the induction and expression pattern of the auxin biosynthesis gene HvTAR2-like. Pharmacological treatments with kynurenine, inhibitor of auxin biosynthesis, and α-(p-chlorophenoxy)-isobutyric acid (PCIB), auxin antagonist, impaired embryogenesis initiation and development, indicating that de novo auxin synthesis and its activity were required for the process. Efflux carrier gene HvPIN1-like was also induced with embryogenesis initiation and progression; auxin transport inhibition by N-1-naphthylphthalamic acid significantly reduced embryo development at early and advanced stages. The results indicate activation of auxin biosynthesis with microspore embryogenesis initiation and progression, in parallel with the activation of polar auxin transport, and reveal a central role of auxin in the process in a monocot species. The findings give new insights into the complex regulation of stress-induced microspore embryogenesis, particularly in monocot plants for which information is still scarce, and suggest that manipulation of endogenous auxin content could be a target to improve in vitro embryo production.

16.
J Exp Bot ; 70(11): 2965-2978, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753698

RESUMEN

Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.


Asunto(s)
Reprogramación Celular , Productos Agrícolas/fisiología , Fitomejoramiento , Polen/embriología , Estrés Fisiológico
17.
Plant Signal Behav ; 14(2): 1559577, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30582408

RESUMEN

Microspore embryogenesis is a powerful biotechnological tool that is very useful in crop breeding for the rapid production of haploid and double-haploid embryos and plants. In this in vitro system, the haploid microspore is reprogrammed by the application of specific stress treatments. A high level of cell death after the stress is a major factor that greatly reduces embryogenesis yield at its initial stages. Autophagy is a degradation pathway that is present in all eukaryotes and plays key roles in a range of processes, including stress responses. Many proteases participate in autophagy and cell death; among them, cathepsins are the most abundant enzymes with a role in plant senescence and programmed cell death (PCD). Moreover, although plant genomes do not contain homologues of caspases, caspase 3-like activity (main executioner protease of animal cell death) has been detected in many plant PCD processes. Recent studies by our group in barley microspore cultures reported that the stress treatment required for inducing microspore embryogenesis (cold treatment), also produced reactive oxygen species (ROS) and cell death, concomitantly with the induction of autophagy, as well as cathepsin-like and caspase 3-like proteolytic activities. In the present study, we report new data on microspore embryogenesis of rapeseed that indicate, as in barley, activation of cell death and autophagy processes after the inductive stress. The results revealed that treatments modulating autophagy and proteases produced the same effect in the two plant systems, regardless of the stress applied, cold in barley or heat in rapeseed. Pharmacological treatments with small bioactive compounds that inhibit ROS, autophagy and specific cell death-proteases led to reduced cell death and an increased embryogenesis initiation rate in both, barley and rapeseed. Taken together, these findings open up new intervention pathways by modulating autophagy and proteases, which are very promising in terms of increasing the efficiency of in vitro microspore embryogenesis systems for biotechnological applications in crop breeding.


Asunto(s)
Brassica napus/metabolismo , Brassica rapa/metabolismo , Hordeum/metabolismo , Brassica napus/fisiología , Brassica rapa/fisiología , Muerte Celular/genética , Muerte Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología
18.
J Plant Physiol ; 230: 1-12, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30134217

RESUMEN

Ovule and seed development in plants has long fascinated the scientific community given the complex cell coordination implicated in these processes. These cell events are highly conserved but are not necessarily representative of all plants. In this study, with the aim of obtaining information regarding the cellular patterns that follow the usual development of the ovule and the zygotic embryo, we carried out an integral anatomical study of the Capsicum chinense Jacq., floral buds and seeds at various days during maturation. This study allowed us to identify the main histo-morphological stages accompanying the transition of somatic cells into the macrospore, female gamete, and the zygotic embryogenesis. This knowledge is fundamental for future biotechnological research focused on solving the morphological recalcitrance observed during the in vitro induction of somatic or microspore embryogenesis in Capsicum. For the first time in C. chinense, we have described the hypostases, a putative source of plant growth regulators, and "the corrosion cavity", a space around the embryo. Additionally, the cell wall pectin-esterification status was investigated by immunohistology. At early stages of morphogenesis, the pectin is highly methyl-esterified; however, methyl-esterification decreases gradually throughout the process. A comparison of the results obtained here, together with the histo- and immunological changes occurring during the somatic and microspore embryogenesis, should help to elucidate the biochemical mechanisms that trigger the morphogenic events in Capsicum spp.


Asunto(s)
Capsicum/crecimiento & desarrollo , Óvulo Vegetal/crecimiento & desarrollo , Pectinas/metabolismo , Semillas/crecimiento & desarrollo , Capsicum/anatomía & histología , Capsicum/metabolismo , Esterificación , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/metabolismo , Técnica del Anticuerpo Fluorescente , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/metabolismo , Semillas/anatomía & histología , Semillas/metabolismo
19.
Methods Mol Biol ; 1815: 247-256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29981126

RESUMEN

Quercus suber L., cork oak, is a forest tree of high social and economic value. The cork is traditionally used in the wine industry to produce bottle stoppers, but it is also a very good material for both thermal and acoustic insulation in construction. Since its harvest does not harm the tree, the use of cork in the industry has a positive impact on the environment.Somatic embryogenesis is considered a feasible system for in vitro regeneration procedures, with many advantages in woody species. Classical genetic breeding programs have important limitations in forest trees, like cork oak, due to their long life span and difficulties of seed conservation and vegetative reproduction. Therefore, somatic embryogenesis has a great potential for large-scale propagation and cryopreservation of elite genotypes, as well as for transformation strategies. In the case of Q. suber, several in vitro propagation systems through somatic embryogenesis have been reported, with different efficiency rates.In the present chapter, updated information is reported about an efficient protocol for induction of somatic embryogenesis of Q. suber from immature zygotic embryos, as well as methods for proliferation and maturation of somatic embryos, germination, plantlet regeneration, and acclimatization.


Asunto(s)
Técnicas de Embriogénesis Somática de Plantas/métodos , Quercus/embriología , Cigoto/crecimiento & desarrollo , Aclimatación , Medios de Cultivo/química , Germinación , Esterilización
20.
Environ Pollut ; 240: 77-86, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29729572

RESUMEN

The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Insecticidas/toxicidad , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Ensayo Cometa , Humanos , Insecticidas/metabolismo , Malatión/farmacología , Cebollas/efectos de los fármacos , Raíces de Plantas/metabolismo , Vicia faba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA